Skip to main content

DISPOSABILITY OF LOADED U.S. DUAL-PURPOSE CANISTERS FROM A CRITICALITY STANDPOINT

This paper assesses the feasibility of direct disposal of loaded dual-purpose canisters (DPCs) from a criticality standpoint by evaluating attributes that could be credited to justify that the DPCs remain subcritical over a repository performance period. This study investigates the uncredited criticality margin associated with actual fuel loading compared with the regulatory licensing design basis limits and evaluates the percentage of DPCs that remain subcritical solely based on the uncredited criticality margin.

Community

The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu

The Radioactive Waste Management Directorate (RWMD) is responsible for implementing geological disposal of the UK’s higher-activity radioactive wastes. RWMD’s research into geological disposal considers safety during waste transport to a disposal facility, during waste disposal operations, and once the facility has been closed. The wastes for disposal comprise a wide range of materials and include some fissile radionuclides.
Community

Probabilistic Criticality Consequence Evaluation (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality.

Community

Range of Parameters For PWR SNF in a 21 PWR WP

This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.

Community

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

Community

Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.

Community

EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.

Community

Westinghouse MOX SNF Isotopic Source

The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).

Community

Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister

The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.

Community

Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology

The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.

Community