Skip to main content

Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials

Stress corrosion cracking (SCC) is one of the most common corrosion-related causes for premature breach of metal structural components. SCC is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously (Jones 1992 [DIRS 169906], Section 8.1): metallurgical susceptibility, critical environment, and sustained tensile stresses.

Community

3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.

Community

Hydrogen-Induced Cracking of the Drip Shield

Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction.

Community

EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.

Community

EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.

Community

EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating (CRWMS M&O) contractor performed calculations to provide input to the design of a waste package (WP). This document analyzes the degradation processes of two types of pressurized water reactor (PWR) spent nuclear fuel (SNF): • Fuel fabricated from low enriched uranium oxide, which has been used, or will ~ used, in commercial nuclear power plants.
Community

Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems

This report is developed from Technical Work Plan for: Thermodynamic Databases for Chemical Modeling (BSC 2006 [DIRS 177885]). The purpose of this analysis report is to update the thermochemical database data0.ymp.R4 (Output DTN: SN0410T0510404.002). Various data have been added, corrected, or corroborated, partly in response to four Condition Reports (CRs): CR 6489, CR 6731, CR 7542, and CR 7756. The most notable changes are a general revision of phosphate data to achieve consistency with the recommendations from the Committee on Data for Science and Technology (CODATA) (Cox. et al.

Community

Radiolytic Specie Generation from Internal Waste Package Criticality

The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p. 2). Shoesmith and King (1998) additionally discuss the effects of radiation on the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of the local gaseous and aqueous environment to produce both oxidizing and reducing radicals.
Community

Analysis of Mechanisms for Early Waste Package / Drip Shield Failure

The purpose of this analysis is to evaluate the types of defects or imperfections that could occur in a waste package or a drip shield and potentially lead to its early failure, and to estimate a probability of undetected occurrence for each type. An early failure is defined as the through-wall penetration of a waste package or drip shield due to manufacturing or handling-induced defects, at a time earlier than would be predicted by mechanistic degradation models for a defect-free waste package or drip shield.

Community