Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Probabilistic External Criticality Evaluation
Probabilistic External Criticality Evaluation
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Probabilistic External Criticality Evaluation (SCPB: N/A)
Probabilistic External Criticality Evaluation (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Geochemistry Model Validation Report: External Accumulation Model
Geochemistry Model Validation Report: External Accumulation Model
The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
Analysis of Critical Benchmark Experiments for Configurations External to WP
Analysis of Critical Benchmark Experiments for Configurations External to WP
The Disposal Criticality Analysis Methodology Topical Report (Reference 1) states that the accuracy of the criticality analysis methodology (MCNP Monte Carlo code and cross-section data) designated to assess the potential for criticality of various configurations in the Yucca Mountain proposed repository is established by evaluating appropriately selected benchmark critical experiments.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
TRIGA Fuel Phase I and II Criticality Calculation
TRIGA Fuel Phase I and II Criticality Calculation
The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
This report presents the analyses and results for the potential occurrence of external criticality events which could result from plutonium waste forms emplaced in a geologic repository similar to the one being developed at Yucca Mountain. The analyses evaluate both the MOX spent fuel and the immobilized plutonium waste forms in a repository if the waste package has degraded and if the fissile material has migrated to the invert and out into the far-field.
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.