Category of Content
Siting Experience Documents Only
Publication Date
Keywords
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Lessons Learned from the West Valley Spent Nuclear Fuel Shipment within the United States
Lessons Learned from the West Valley Spent Nuclear Fuel Shipment within the United States
This paper describes the lessons learned from the U.S. Department of Energy (DOE) transportation of
125 DOE-owned commercial spent nuclear fuel (SNF) assemblies by railroad from the West Valley Demonstration
Project to the Idaho National Engineering and Environmental Laboratory (INEEL). On July 17, 2003, DOE made
the largest single shipment of commercial SNF in the history of the United States. This was a highly visible and
political shipment that used two specially designed Type B transportation and storage casks. This paper describes
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Transportation Planning and Execution: Commercial Spent Nuclear Fuel
Transportation Planning and Execution: Commercial Spent Nuclear Fuel
There have been roughly 2,600 shipments of commercial spent fuel in this country over the past three decades or so. Although this is not an enormous volume by European standards, it is nevertheless significant. These shipments fall into two general categories: individual and "campaign."
There have been a number of individual shipments where lead test assembly fuel was shipped from a reactor to a laboratory for examination. This is an important part of reactor fuel development.
Transportation of High-Level Radioactive Waste and Spent Nuclear Fuel: Proposed Rail Inspection Program to Promote Reciprocity
Transportation of High-Level Radioactive Waste and Spent Nuclear Fuel: Proposed Rail Inspection Program to Promote Reciprocity
With the Department of Energy’s (DOE) recent submittal of a license application to the U.S. Nuclear Regulatory Commission, the development of Yucca Mountain, Nevada, as a national nuclear waste repository moves one step closer to reality. An operating site at Yucca Mountain could receive between 38-106 rail shipments and 53-89 truck shipments annually over a period of 50 years.