Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
DOE Announces Three Potential Sites for Proposed Monitored Retrievable Storage Facility
DOE Announces Three Potential Sites for Proposed Monitored Retrievable Storage Facility
Press Release - Three potential candidate sites for a facility to handle, package and temporarily store spent nuclear fuel have been identified by the U.S. Department of Energy (DOE). If approved by Congress, the facility would receive spent fuel from commercial nuclear power plants nationwide and package it for delivery to a permanent repository for final disposal.
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
To establish a new organization to manage nuclear waste, provide a consensual process for siting nuclear waste facilities, ensure adequate funding for managing nuclear waste, and for other purposes.
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
By the end of this century, the United States plans to begin operating the first geologic repository for the permanent disposal of commercial spent nuclear fuel and high-level radioactive Waste. Public Law 97-425, the Nuclear waste Policy Act of 1982 (the Act), specifies the process for selecting a repository site, and constructing, operating, closing, and decommissioning the repository.
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
The Siting Record
The Siting Record
An Account of the Programs of Federal Agencies and Events That Have Led to the Selection of a Potential Site for a Geologic Repository for High-Level Radioactive Waste
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Recommendation by the Secretary of Energy of Candidate Sites for Site Characterization for the First Radioactive-Waste Repository
Recommendation by the Secretary of Energy of Candidate Sites for Site Characterization for the First Radioactive-Waste Repository
The Nuclear Waste Policy Act of 1982 (the Act), established a
step-by-step process for the siting of the nation's first repository for
high-level radioactive waste and spent fuel. The Act gave the Department of
Energy (DOE) the primary responsibility for conducting this siting process.
The first step in the process laid out in the Act was the development by
the DOE, with the concurrence of the Nuclear Regulatory Commission (NRC), of
general guidelines to be used by the Secretary of the DOE (the Secretary) in
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
The Department of Energy (DOE), pursuant to the Atomic Energy Act of 1954
as amended, the Energy Reorganization Act of 1974, the Department of Energy
Organization Act of 1977, and the Nuclear Waste Policy Act of 1982 (the Act),
has the responsibility to provide for the disposal of high-level radioactive
waste and spent nuclear fuel.* The DOE selected mined geologic repositories
as the preferred means for the disposal of commercially generated high-level
radioactive waste and spent fuel (Federal Register, Vol. 46, p. 26677, May 14,
Locating a radioactive waste repository in the ring of fire
Locating a radioactive waste repository in the ring of fire
The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection.
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
As outlined in the overall program for high-level waste (HLW) management in Japan, defined by the Atomic Energy Commission (AEC), HWL separated from spent nuclear fuel during reprocessing will be immobilized in a glass matrix and stored for a period of 30 to 50 years to allow cooling; it will then be disposed of in a stable deep geological formation.
History, Structure and Institutional Overview of the Nuclear Waste Policy Act of 1982
History, Structure and Institutional Overview of the Nuclear Waste Policy Act of 1982
The Nuclear Waste Policy Act of 1982 (NWPA) established a program to deal comprehensively with the waste byproducts of nuclear power generation, as well as defense-related radioactive wastes, if appropriate. Under this program, the federal Department of Energy (DOE) must locate and develop a site for disposal of high-level radioactive wastes in a geologic setting capable of isolating them from adverse public and environmental exposure for at least 10,000 and up to 100,000 years.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
The structure of the Fourth National Report complies with the Guidelines Regarding the
Form and Structure of National Reports (INFCIRC/604/Rev.1).
Section A describes the scope of the nuclear activity developed in Argentina since 1950
as well as the legal and regulatory framework. It also makes reference to the Strategic
Plan for Radioactive Waste Management (Strategic Plan), which refers to the safety of
Spent Fuel Management and Radioactive Waste Management.
Evaluating Site Suitability for a HLW Repository
Evaluating Site Suitability for a HLW Repository
The primary objective of government policy, and of NUMO in implementing this policy, is to
ensure that a repository for Japan’s high-level radioactive waste is located so as to provide
secure isolation of the waste and adequate safety for present and future generations. This
means that the site has to be chosen carefully, taking full account of all its characteristics. In
order to address these characteristics in an orderly and structured manner, we have established
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
This report presents a methodology for validation of the isotopic
contents of spent light water reactor fuel for actinide-only burnup
credit with additional high-quality radiochemistry assay (RCA) data
obtained from the Yankee Rowe pressurized water reactor. The
additional Yankee Rowe RCA data were not included in previous
isotopic validation studies for burnup credit due to the difficulty of
accurately modeling the complex Yankee Rowe fuel assembly design
using the SAS2H one-dimensional sequence of the earlier SCALE
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Yucca Mountain - Nevada's Perspective
Yucca Mountain - Nevada's Perspective
Yucca Mountain—that barren rise in the desert ninety miles from Las Vegas—is the nation‘s only site identified for the potential location of the first ge ological repository for commercially-generated HLNW and SNF. Many assume
that Yucca Mountain has geologic and climatic qualities that make it uniquely
suitable to isolate the thousands of metric tons of the world‘s most lethal, long lived waste currently accumulating at 104 operating nuclear power plants across the United States.
Unfortunately, Yucca Mountain is an exceptionally bad site,
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.