Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Geochemistry Model Validation Report: Material Degradation and Release Model
Geochemistry Model Validation Report: Material Degradation and Release Model
The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
LINE - Leadership in Nuclear Energy Commission - Full Report
LINE - Leadership in Nuclear Energy Commission - Full Report
Recognizing that Idaho has a major strategic and economic interest in maintaining INL’s leadership role and in helping
the nuclear energy industry successfully meet these broader challenges, Idaho governor C.L. “Butch” Otter established
the Leadership in Nuclear Energy or “LINE” Commission in February 2012.
The Governor recognized that recent national developments in the nuclear energy sector will cause the State of Idaho to
face important choices in the future and that he needed to understand the best options available.
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs).
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
In order to decrease the risk of terrorism, it has been suggested that used nuclear fuel should be
moved to dry storage early, after five years cooling in the spent fuel pool. The Nuclear
Regulatory Commission (NRC) has reviewed this issue and issued a white paper stating that it
did not believe such a measure was justified in light of additional security measures implemented
at nuclear plants and the impacts associated with the early movement of used fuel into dry
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The United States makes decisions regarding the domestic uses of nuclear energy and the nuclear fuel cycle primarily based economic considerations, domestic political constraints, and environmental impact concerns. Such factors influence U.S. foreign policy decisions as well, but foreign policy decisions are often more strongly determined by national security considerations, including concerns about nuclear weapons proliferation and nuclear terrorism.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
A Technology Roadmap for Generation IV Nuclear Energy Systems
A Technology Roadmap for Generation IV Nuclear Energy Systems
To advance nuclear energy to meet future energy needs, ten countries—Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States—have agreed on a framework for international cooperation in research for a future generation of nuclear energy systems, known as Generation IV. The figure below gives an overview of the generations of nuclear energy systems. The first generation was advanced in the 1950s and 60s in the early prototype reactors.
slides - Management of Spent Fuel Pool Neutron Absorbing Material Degradation
slides - Management of Spent Fuel Pool Neutron Absorbing Material Degradation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
The almost limitless energy of the atom was first harnessed in the United States, as scientists proved the basic physics of nuclear fission in a rudimentary reactor built in the floor of a squash court at the University of Chicago in 1942, and then harnessed that proven energy source in the form of atomic weapons used to end World War II. Scientists who accomplished this feat moved quickly after World War II to harness that power for peaceful uses, focusing primarily on electricity generation for industry, commerce, and household use.
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
The purpose of this U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment
Report (Assessment) is to present an analysis of the adequacy of the fee being paid by nuclear
power utilities for the permanent disposal of their SNF and HLW by the United States
government.
This Assessment consists of six sections: Section 1 provides historical context and a comparison
to previous fee adequacy assessments; Section 2 describes the system, cost, income, and
EQ6 Calculation for Chemical Degradation of Enrico Fermi Codisposal Waste Packages: Effects of Updated Design and Rates
EQ6 Calculation for Chemical Degradation of Enrico Fermi Codisposal Waste Packages: Effects of Updated Design and Rates
The Monitored Geologic Repository (MGR) Waste Package Project of the BSC Management and Operating Contractor for the Department of Energy's Office of Civilian Radioactive Waste Management performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Reactor owned by the DOE (Ref. 9). The Fermi SNF has been considered for disposal at the proposed Yucca Mountain site.
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
This document summarizes DOE’s commercial nuclear energy RD&D program based on a R&D roadmap and on DOE/NE’s budget request for fiscal year 2011. The roadmap is written at a high level and is mostly qualitative in terms of activities, milestones and decisions to be made and does not contain budget information. The fiscal year 2011 budget request contains more specific and detailed information on activities, milestones, decisions, and budgets but only for fiscal year 2011 and the two preceding fiscal years.
Review of DOE's Nuclear Energy Research and Development Program - Summary
Review of DOE's Nuclear Energy Research and Development Program - Summary
There has been a substantial resurgence of interest in nuclear power in the United States
over the past few years. One consequence has been a rapid growth in the research
budget of DOE’s Office of Nuclear Energy (NE). In light of this growth, the Office of
Management and Budget included within the FY2006 budget request a study by the
National Academy of Sciences to review the NE research programs and recommend
priorities among those programs. The programs to be evaluated were: Nuclear Power
Nuclear Energy Research and Development Roadmap
Nuclear Energy Research and Development Roadmap
To achieve energy security and greenhouse gas (GHG) emission reduction objectives, the United States must develop and deploy clean, affordable, domestic energy sources as quickly as possible. Nuclear power will continue to be a key component of a portfolio of technologies that meets our energy goals. This document provides a roadmap for the Department of Energy’s (DOE’s) Office of Nuclear Energy (NE) research, development, and demonstration activities that will ensure nuclear energy remains viable energy option for the United States.
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs).