Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Standard Review Plan for Transportation Packages for MOX Spent Nuclear Fuel
Standard Review Plan for Transportation Packages for MOX Spent Nuclear Fuel
The NRC contracted with LLNL to compile this supplement to NUREG-1617 to incorporate additional
information specific to mixed uranium-plutonium oxide (MOX) fuel. This supplement provides details
on package review guidance resulting from significant differences between spent nuclear fuel from
irradiated LEU fuel and that from irradiated MOX fuel. The information presented is not to be
construed as having the force and effect of NRC regulations (except where regulations are cited), or as
Spent Fuel Burnup Credit in Casks: An NRC Perspective
Spent Fuel Burnup Credit in Casks: An NRC Perspective
Until now, the Nuclear Regulatory Commission's (NRC) approval of criticality safety evaluations for spent fuel in transport and storage casks has been based on analyzing the fuel as though it were fresh and without burnable poisons. The well-known nuclide composition of fresh fuel has provided a straightforward and bounding approach for showing that spent fuel systems will remain subcritical under normal and accident conditions. Burnup credit refers to the approval of criticality safety evaluations that consider the decrease in fuel reactivity caused by. irradiation in the reactor.
Selection of Reactor Criticals as Benchmarks for Spent Nuclear Fuels
Selection of Reactor Criticals as Benchmarks for Spent Nuclear Fuels
An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel
An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel
One of the significant issues yet to be resolved for using
burnup credit ~BUC! for spent nuclear fuel ~SNF! is establishing
a set of depletion parameters that produce an adequately conservative
representation of the fuel’s isotopic inventory. Depletion
parameters ~such as local power, fuel temperature, moderator temperature,
burnable poison rod history, and soluble boron concentration!
affect the isotopic inventory of fuel that is depleted in a
pressurized water reactor ~PWR!. However, obtaining the detailed
Nondestructive Assay of Nuclear Low-Enriched Uranium Spent Fuels for Burnup Credit Application
Nondestructive Assay of Nuclear Low-Enriched Uranium Spent Fuels for Burnup Credit Application
Criticality safety analysis devoted to spent-fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent-fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as burnup credit.
Computational Benchmark of SAS2D Against Spent Fuel Samples from the Takahama-3 Reactor
Computational Benchmark of SAS2D Against Spent Fuel Samples from the Takahama-3 Reactor
Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit
Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit
The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers.
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
An acceptable long-term solution for used (spent) fuel from nuclear power reactors has evaded all countries engaged in the civilian
nuclear fuel cycle. Furthermore, many countries are trying to develop interim storage solutions that address the shortage of storage in
the spent fuel cooling pools at reactors. The United States has a particularly acute problem due to its adherence to an open fuel cycle
and its large number of reactors. Two main options are available to address the spent fuel problem: dry storage on-site at reactors and
Storage of Spent Nuclear Fuel (Specific Safety Guide)
Storage of Spent Nuclear Fuel (Specific Safety Guide)
This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup.
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
With the continuing accumulation of spent fuel at reactor sites, the demand for additional storage of spent fuel at AFR (away from reactor) facilities is growing. It is an issue for most Member States generating nuclear power, including those countries pursuing reprocessing. There are a diversity of technical options and services available which offer competitive, reliable solutions to meet the storage requirements. In particular, dry storage technologies have been widely applied.
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
The U.S. industry’s limited efforts at licensing transportation packages characterized as “highcapacity,”
or containing “high-burnup” (>45 GWd/MTU) commercial spent nuclear fuel
(CSNF), or both, have not been successful considering existing spent-fuel inventories that will
have to be eventually transported. A holistic framework is proposed for resolving several CSNF
transportation issues. The framework considers transportation risks, spent-fuel and cask-design
Industry Spent Fuel Storage Handbook
Industry Spent Fuel Storage Handbook
The Industry Spent Fuel Storage Handbook (“the Handbook”) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at-reactor dry storage of SNF.
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Independent spent fuel storage installations (ISFSIs) are currently licensed for 20 years. However, delays in developing permanent spent fuel disposal capability require continued ISFSI storage beyond the 20-year term. This report provides a technical basis for demonstrating the feasibility of extended spent fuel storage in ISFSIs.