slides - LACBWR Dry Cask Storage
slides - LACBWR Dry Cask Storage
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This report presents a comprehensive description of the post-closure radiological safety assess- ment of a repository for spent fuel (SF), vitrified high-level waste (HLW) from the reprocessing of spent fuel and long-lived intermediate-level waste (ILW), sited in the Opalinus Clay of the Zürcher Weinland in northern Switzerland. This assessment has been carried out as part of the technical basis for Project Entsorgungsnachweis1, which also includes a synthesis of informa- tion from geological investigations of the Opalinus Clay and a report on engineering feasibility.
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
The Centralized Interim Storage Facility (CISF) is designed as a temporary, above-ground away-from-reactor spent fuel storage installation for up to 40,000 metric tons of uranium (MTU). The design is non-site-specific but incorporates conservative environmental and design factors (e.g., 360 mph tornado and 0.75 g seismic loading) intended to be capable of bounding subsequent site-specific factors. Spent fuel is received in dual-purpose canister systems and/or casks already approved for transportation and storage by the Nuclear Regulatory Commission (NRC).
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) initiated a research program
to support the development of technical bases and guidance that would facilitate the implementation of burnup
credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of
investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for
assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial
The amount of spent fuel stored on-site at commercial nuclear reactors will continue to accumulate—increasing by about 2,000 metric tons per year and likely more than doubling to about 140,000 metric tons—before it can be moved off-site, because storage or disposal facilities may take decades to develop. In examining centralized storage or permanent disposal options, GAO found that new facilities may take from 15 to 40 years before they are ready to begin accepting spent fuel. Once an off-site facility is available, it will take several more decades to ship spent fuel to that facility.
The Law of 30 December 1991 [1] confers to Andra the mission of assessing the feasibility of a repository of high-level and long-lived (HLLL) waste in a deep geological formation.
The U.S. Nuclear Waste Technical Review Board (Board) is tasked by the amendments to the Nuclear Waste Policy Act of 1982 to independently evaluate U. S. Department of Energy (DOE) technical activities for managing and disposing of used nuclear fuel and high-level radioactive waste. This report was prepared to inform DOE and Congress about the current state of the technical basis for extended dry storage1 of used fuel and its transportation following storage.
The Committee on Radioactive Waste Management (CoRWM) has carried out an assessment of the generic Disposal System Safety Case (gDSSC) published by the Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) in February 2011. The assessment covered the whole suite of gDSSC documents, and related RWMD reports on research and development (R&D) and site characterisation.
Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy) Posiva is preparing to submit the construction license application for a spent fuel repository by the end of the year 2012. The long-term safety section supporting the license application is based on a safety case, which, according to the internationally adopted definition, is a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository.
The goal of radioactive waste management in Sweden is to dispose of all radioactive waste products generated at the Swedish nuclear power plants in a safe manner. Furthermore, all other radioactive waste that arises in Sweden shall be safely disposed of.<br/>The Act on Nuclear Activities requires that the owners of the Swedish nuclear power plants adopt the measures that are needed to achieve this goal. The owners of the Swedish nuclear power plants have commissioned the Swedish Nuclear Fuel and Waste Management Company (SKB) to implement the measures that are needed.<br/>
This report is a background to RD&D-Programme 98 /1-11. The report gives an account of most of the research and development being conducted by SKB. The current state of knowledge is described, along with the goals and programmes that govern the continued work. The period of immediate concern comprises the next three years, 1999-2001. Particulars for the three years following that are for natural reasons less detailed and mainly indicate a direction.
During the next few years, SKB will add the results of county studies and additional feasibility studies to the background data for siting of the deep repository. We plan to be able to choose at least two sites for site investigations in 2001. The investigations, which will include test drillings, should be able to be started in 2002. An important milestone will thereby be passed in the siting work.<br/><br/>The technology for deep disposal will be tested on full scale at our laboratories in Oskarshamn.
The Swiss Federal Nuclear Safety Inspectorate (ENSI) is the regulatory authority for nuclear safety and security of the nuclear installations in Switzerland. ENSI issues guidelines either in its capacity as regulatory authority or based on a mandate in an ordinance. Guidelines are support documents that formalise the implementation of legal requirements and facilitate uniformity of implementation practices. They further concretise the state-of-the-art in science and technology.
Worldwide activities related to the storage of spent (irradiated) nuclear power reactor fuel and highly-radioactive, long-lived wastes are summarized, with a review of the storage programs and plans of 26 nations. The focus of the report is on the application of dry storage techniques to spent fuel, although dry storage of long-lived wastes is also reviewed.