Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
slides - Cumulative Impact of Industry and NRC Actions
slides - Cumulative Impact of Industry and NRC Actions
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
NRC/NEI, January 24, 2014 Public Meeting Presentations
NRC/NEI, January 24, 2014 Public Meeting Presentations
NRC/NEI, January 24, 2014 Public Meeting Presentations
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.
Aging and Phase Stability of Waste Package Outer Barrier
Aging and Phase Stability of Waste Package Outer Barrier
This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
This paper provides a brief description of the United States Nuclear Regulatory Commission (NRC) and its regulatory process for the current nuclear fuel cycle for light water power reactors (LWRs). It focuses on the regulatory framework for the licensing of facilities in the fuel cycle. The first part of the paper provides an overview of the NRC and its regulatory program including a description of its organization, function, authority, and responsibilities.
Analysis of Critical Benchmark Experiments for Configurations External to WP
Analysis of Critical Benchmark Experiments for Configurations External to WP
The Disposal Criticality Analysis Methodology Topical Report (Reference 1) states that the accuracy of the criticality analysis methodology (MCNP Monte Carlo code and cross-section data) designated to assess the potential for criticality of various configurations in the Yucca Mountain proposed repository is established by evaluating appropriately selected benchmark critical experiments.
slides - Industry Response to NRC's Request for Comments on Retrievability, Cladding Integrity and 10 CFR 71/72 Alignment
slides - Industry Response to NRC's Request for Comments on Retrievability, Cladding Integrity and 10 CFR 71/72 Alignment
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Analysis of Dust Deliquescence for FEP Screening
Analysis of Dust Deliquescence for FEP Screening
The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).
Waste Package, LCE, CRC, and Radiochemical Assay Comparison Evaluation
Waste Package, LCE, CRC, and Radiochemical Assay Comparison Evaluation
The purpose of this calculation is to document the validity of the commercial reactor criticals (CRC) as a source for a spent nuclear fuel benchmark, and to characterize the neutronic similarities between a CRC and a waste package (WP). This report illustrates comparisons of neutron spectrum and the effects on criticality arising from physical differences between a WP and a CRC. This report is an engineering calculation supporting the development of the disposal criticality analysis methodology, performed under Quality Administrative Procedure (QAP)-3-15 Revision 0.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (SIs) in the outer corrosion barrier (OCB).
Range of Parameters For PWR SNF in a 21 PWR WP
Range of Parameters For PWR SNF in a 21 PWR WP
This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.
Development of Technical Data Needed to Justify Full Burnup Credit in Criticality Safety Licensing Analyses Involving Commercial Spent Nuclear Fuel
Development of Technical Data Needed to Justify Full Burnup Credit in Criticality Safety Licensing Analyses Involving Commercial Spent Nuclear Fuel
This technical work plan (TWP) describes the planning of burnup credit (BUC) experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Lead Laboratory for Repository Systems. This TWP serves to coordinate and integrate a program to implement Work Packages S31023 to S31036 of the fiscal year 2007 annual work plan (AWP) for the Lead Laboratory.
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.
Drift Collapse Weight and Thermal Loading of TAD and 5-DHLW/DOE SNF Short Co-Disposal Waste Packages
Drift Collapse Weight and Thermal Loading of TAD and 5-DHLW/DOE SNF Short Co-Disposal Waste Packages
The purpose of this calculation is to determine the structural response of the Transportation, Aging, Disposal (TAD) waste package (WP) and the 5-Defense High-Level Radioactive Waste/Department of Energy Spent Nuclear Fuel Short (5-DHLW/DOE SNF Short) co-disposal WP with emplacement pallet (EP) at room temperature and elevated temperatures for the complete drift collapse event sequence. the repository emplacement drift (RED) collapse will impose a pressure load due to the weight of the rubble rock and thermal expansion due to temperature rise as a result of lack of ventilation.
DHLW Glass Waste Package Criticality Analysis
DHLW Glass Waste Package Criticality Analysis
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.
Criticality Analysis of Pu and U accumulations in a Tuff Fracture Network
Criticality Analysis of Pu and U accumulations in a Tuff Fracture Network
The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of Uranium minerals (sddyite), Plutonium oxide (Pu2O), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water of clayey material in the accumulation and the water fraction in the tuff.
Commercial Spent Nuclear Fuel Waste Package Misload Analysis
Commercial Spent Nuclear Fuel Waste Package Misload Analysis
The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package
PWR Axial Profile Evaluation
PWR Axial Profile Evaluation
This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.