slides - Potential Improvements to the Licensing Process for a Recycling Plant
slides - Potential Improvements to the Licensing Process for a Recycling Plant
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Goal: Secure the Benefits, Limit the Risk
The extent to which nuclear power will be a broadly accepted option for meeting future global energy needs depends upon cost, safety, waste management and the ability to limit the associated proliferation risks. While all four considerations are important, this report exclusively examines proliferation risks.
At the request of the staff to the Blue Ribbon Commission on America’s Nuclear Future (“BRC”), we have reviewed the following questions:
1. Is there legal authority for DOE or any other entity to undertake to site a repository for “co-mingled” nuclear materials (i.e., civilian and defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW)) at any site other than Yucca Mountain?
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This report describes a novel approach developed at the Oak Ridge National Laboratory
(ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor
for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality
safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor.
Validation methods for burnup credit have attempted to separate the uncertainty associated with
This paper draws on my experience as a reviewer of the scientific programs and performance assessments of the geological repository for transuranic waste at the Waste Isolation Pilot Plant in New Mexico and the proposed repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. In addition, I have served on numerous committees of the National Research Council that have addressed many aspects of nuclear waste management.
This report presents the findings and conclusions of OTA's analysis of Federal policy
for the management of commercial high-level radioactive waste. It represents a major update
and expansion of the analysis presented to Congress in our summary report, Managing
Commercial High-Level Radioactive Waste, published in April of 1982 during the
debate leading to passage of the Nuclear Waste Policy Act of 1982 (NWPA). This new
report is intended to contribute to the implementation of NWPA, and in particular to
This report puts forth a number of options and recommendations for how to engage
stakeholders and other members of the public in the storage and management of spent
nuclear fuel and high level waste in the United States. The options are generated from a
scientific review of existing publications proposing criteria for assessing past efforts to
engage publics and stakeholders in decision-making about risky technologies. A set of
nine principles are derived for evaluating cases of public and stakeholder engagement with
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
In the course of producing electrical power in light water.reactors (LWRs), the uranium
fuel accumulates fission products until the fission process is no longer efficient for power
production. At that point the fuel is removed from the reactor and stored in water basins
to allow radioactivity to partially decay before further disposition. This fuel is referred
to as "spent fuel." Although spent fuel as At is discharged from a reactor is intensely
radioactive, it has been stored safely in moderate quantities for decades. Spent fuel could
This study examines concerns raised by the U.S. Department of Energy (DOE) in its planning for transition from active waste site management and remediation to what the department terms “long-term stewardship.” It examines the scientific, technical, and organizational capabilities and limitations that must be taken into account in planning for the long-term institutional management of the department’s numerous waste sites that are the legacy to this country’s nuclear weapons program. It also identifies characteristics and design criteria for effective longterm institutional management.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The Global Nuclear Energy Partnership (GNEP) Program, a United States (U.S.) Department of
Energy (DOE) program, is intended to support a safe, secure, and sustainable expansion of
nuclear energy, both domestically and internationally. Domestically, the GNEP Program would
promote technologies that support economic, sustained
production of nuclear-generated electricity, while
reducing the impacts associated with spent nuclear fuel
disposal and reducing proliferation risks. DOE envisions
changing the U.S. nuclear energy fuel cycle1 from an
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013