Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Radionuclide Screening
Radionuclide Screening
The waste forms under consideration for disposal in the repository at Yucca Mountain contain scores of radionuclides. It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from a nuclear waste repository at Yucca Mountain.
Preclosure Consequence Analyses
Preclosure Consequence Analyses
The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied·to future depletion calculations using SAS2H in which no measurements are available. ·
Sensitivity Study of Reactivity Consequences to Waste Package Egress Area
Sensitivity Study of Reactivity Consequences to Waste Package Egress Area
The criticality consequence analysis for pressurized water reactor (PWR) waste packages (WP)
(Civilian Radioactive Waste Management System [CRWMS] Management and Operating
Contractor [M&O] 1997) focused on results obtained by maximizing postulated rates of
reactivity insertion to assure no synergistic reactions could occur among waste packages from
hypothetical criticality events. Other variables potentially influencing the criticality
consequences were held constant during the above referenced analysis. One of those variables
44-BWR WASTE PACKAGE LOADING CURVE EVALUATION
44-BWR WASTE PACKAGE LOADING CURVE EVALUATION
The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (SIs) in the outer corrosion barrier (OCB).
Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode
Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode
The objective of this calculation is to characterize the nuclear criticality safety concerns
associated with the codisposal of the Department of Energy’s (DOE) Enrico Fermi (EF) Spent
Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and
placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to
the determination of the effective neutron multiplication factor (keff) for the degraded mode
internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8
Range of Parameters For PWR SNF in a 21 PWR WP
Range of Parameters For PWR SNF in a 21 PWR WP
This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.
Commercial Reactor Reactivity Analysis For Grand Gulf, Unit 1
Commercial Reactor Reactivity Analysis For Grand Gulf, Unit 1
The objective of this calculation is to document the Grand Gulf Unit 1 (GG1) reactivity calculations for sixteen critical statepoints in cycles 4 through 8. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel to be placed in a geologic repository. This calculation is performed as part of the evaluation in the CRC program.
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.