Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Geochemistry Model Validation Report: Material Degradation and Release Model
Geochemistry Model Validation Report: Material Degradation and Release Model
The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
EQ6 Calculation for Chemical Degradation of Enrico Fermi Codisposal Waste Packages: Effects of Updated Design and Rates
EQ6 Calculation for Chemical Degradation of Enrico Fermi Codisposal Waste Packages: Effects of Updated Design and Rates
The Monitored Geologic Repository (MGR) Waste Package Project of the BSC Management and Operating Contractor for the Department of Energy's Office of Civilian Radioactive Waste Management performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Reactor owned by the DOE (Ref. 9). The Fermi SNF has been considered for disposal at the proposed Yucca Mountain site.
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied·to future depletion calculations using SAS2H in which no measurements are available. ·
Sensitivity Study of Reactivity Consequences to Waste Package Egress Area
Sensitivity Study of Reactivity Consequences to Waste Package Egress Area
The criticality consequence analysis for pressurized water reactor (PWR) waste packages (WP)
(Civilian Radioactive Waste Management System [CRWMS] Management and Operating
Contractor [M&O] 1997) focused on results obtained by maximizing postulated rates of
reactivity insertion to assure no synergistic reactions could occur among waste packages from
hypothetical criticality events. Other variables potentially influencing the criticality
consequences were held constant during the above referenced analysis. One of those variables
44-BWR WASTE PACKAGE LOADING CURVE EVALUATION
44-BWR WASTE PACKAGE LOADING CURVE EVALUATION
The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (SIs) in the outer corrosion barrier (OCB).
Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode
Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode
The objective of this calculation is to characterize the nuclear criticality safety concerns
associated with the codisposal of the Department of Energy’s (DOE) Enrico Fermi (EF) Spent
Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and
placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to
the determination of the effective neutron multiplication factor (keff) for the degraded mode
internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8
Range of Parameters For PWR SNF in a 21 PWR WP
Range of Parameters For PWR SNF in a 21 PWR WP
This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.
Commercial Reactor Reactivity Analysis For Grand Gulf, Unit 1
Commercial Reactor Reactivity Analysis For Grand Gulf, Unit 1
The objective of this calculation is to document the Grand Gulf Unit 1 (GG1) reactivity calculations for sixteen critical statepoints in cycles 4 through 8. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel to be placed in a geologic repository. This calculation is performed as part of the evaluation in the CRC program.
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass
The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.