Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
The development of radioactive waste repositories involves consideration of how the waste and the
engineered barrier systems will evolve, as well as the interactions between these and, often relatively
complex, natural systems. The timescales that must be considered are much longer than the timescales
that can be studied in the laboratory or during site characterisation. These and other factors can lead to
various types of uncertainty (on scenarios, models and parameters) in the assessment of long-term,
Storage of Spent Nuclear Fuel (Specific Safety Guide)
Storage of Spent Nuclear Fuel (Specific Safety Guide)
This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup.
Radionuclide Screening
Radionuclide Screening
The waste forms under consideration for disposal in the repository at Yucca Mountain contain scores of radionuclides. It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from a nuclear waste repository at Yucca Mountain.
Preclosure Consequence Analyses
Preclosure Consequence Analyses
The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB’s application for a final repository. The purposes of the safety assessment SR-Can are the following:
1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant.
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
In RD&D-Programme 92, SKB presented a partially new strategy for its activities. The new strategy entailed a focusing and concentration on the implementation of deep disposal of a limited quantity (about 800 tonnes) of encapsulated spent nuclear fuel during the coming 20-year period. Following this initial deposition, the results of the work will be evaluated, and only then will a decision be taken as to how and when regular deposition of the main body of the fuel and other long-lived nuclear waste will take place.
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
This work was performed to suggest possible strategies for geoscientific classifications in the siting process of a high-level repository. To develop a feasible method for geoscientific classifications, a number of factors of a philosophical character, related to the purpose of the classifications, need to be accounted for. Many different approaches can be visualized, and this report was not intended to present a complete classification methodology.
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada (40 CFR Part 197) -- Final Rule Response to Comments Document
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada (40 CFR Part 197) -- Final Rule Response to Comments Document
EPA held a 90-day public comment period for the proposed radiation protection standards for Yucca Mountain (August 27, 1999 through November 26, 1999). Sixty-nine (69) sets of written comments were submitted to EPAÕs Air Docket regarding the proposed standards, although some commenters submitted more than one set of written comments. In addition, the Agency received oral testimony on the proposed standards from 28 speakers during public hearings that were held in Washington, DC; Las Vegas, NV; Amargosa Valley, NV; and Kansas City, MO.
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Final Rule
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Final Rule
We, the Environmental Protection Agency (EPA), are promulgating public health and safety standards for radioactive material stored or disposed of in the potential repository at Yucca Mountain, Nevada. Section 801 of the Energy Policy Act of 1992 (EnPA, Pub. L. 102Ð486) directs us to develop these standards. Section 801 of the EnPA also requires us to contract with the National Academy of Sciences (NAS) to conduct a study to provide findings and recommendations on reasonable standards for protection of the public health and safety.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Spent fuel in Sweden emanates mainly from four commercial nuclear power plants. In addition there is one material testing reactor and one research reactor. The radioactive waste originates from the nuclear power industry as well as medical use, industry, research and consumer products.
Actual Implementation of a Spent Nuclear Fuel Repository in Sweden: Seizing Opportunities
Actual Implementation of a Spent Nuclear Fuel Repository in Sweden: Seizing Opportunities
Making the decision-making basis for nuclear waste management transparent Summary of a pre-study report
Making the decision-making basis for nuclear waste management transparent Summary of a pre-study report
Identifying remaining socio-technical challenges at the national level: Sweden
Identifying remaining socio-technical challenges at the national level: Sweden
Robust and rational decision making processes in risk society
Robust and rational decision making processes in risk society
Radioactive Waste Management and Decommissioning in Sweden
Radioactive Waste Management and Decommissioning in Sweden
OECD/NEA: Sweden
OECD/NEA: Sweden
Stakeholder Dialogue: Experience and Analysis
Stakeholder Dialogue: Experience and Analysis
The report begins with a consideration of the factors which have led to a growth in the use of dialogue processes, a clarification of key concepts and a classification of dialogue processes. A description of recent and current activities in Europe and North America is followed by discussion of the relationship of processes and contexts. This then leads to an identification of the key aims and evaluation criteria which will be used in the design of dialogue processes to be conducted in subsequent phases of the project.
Geosphere Performance Indices: Comparative measures for site selection and safety assesment of deep waste repositories
Geosphere Performance Indices: Comparative measures for site selection and safety assesment of deep waste repositories
The concept of Geosphere Perfonnance Indices (GPis) is proposed. The "performance"<br/>refers to the geosphere's capacity to retain/contain radionuclides in the event of their accidental<br/>release at some point in time. The GPis are based on the Lagrangian stochastic-analytical<br/>framework for transport in the subsurface and are believed to render useful tools in performance<br/>assessment studies in general and in the site selection process in particular.
RD&D Programme 2007: Programme for research, development, and demonstration of methods for the management and disposal of nuclear waste
RD&D Programme 2007: Programme for research, development, and demonstration of methods for the management and disposal of nuclear waste
RD&D Programme 2007 presents SKB’s plans for research, development and demonstration during<br/>the period 2008–2013. The plans for the first three-year period are for natural reasons more detailed<br/>than those for the next one.
Handling and final disposal of nuclear waste: Hard Rock Laboratory
Handling and final disposal of nuclear waste: Hard Rock Laboratory
In an international perspective, Sweden has come a long way in the development of safe and accepted systems for the management and disposal of radioactive waste. <br/><br/>A complete system for sea transport of spent nuclear fuel from the twelve Swedish nuclear reactors has been in operation since 1982. The spent nuclear fuel will be stored in CLAB for a period of about 40 years up until final disposal. The facility has been in operation since 1985. A final repository for low- and intermediate-level short-lived waste, SFR, has been in operation since April 1988.