Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Dry Storage of Used Fuel Transition to Transport
Dry Storage of Used Fuel Transition to Transport
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Directory of Certificates of Compliance for Radioactive Materials Packages (NUREG-0383)
Directory of Certificates of Compliance for Radioactive Materials Packages (NUREG-0383)
The purpose of this directory is to make available a convenient source of information on package designs approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packages, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volume 2. The report includes all package designs approved prior to the publication date of the directory as of September 2013.
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
This presentation was given by Earl Easton at the 2011 National State Liaison Officers Conference in Bethesda, MD.
The presentation highlights the current state of spent nuclear fuel as well as the progress toward its ultimate disposal.
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
The U.S. industry’s limited efforts at licensing transportation packages characterized as “highcapacity,”
or containing “high-burnup” (>45 GWd/MTU) commercial spent nuclear fuel
(CSNF), or both, have not been successful considering existing spent-fuel inventories that will
have to be eventually transported. A holistic framework is proposed for resolving several CSNF
transportation issues. The framework considers transportation risks, spent-fuel and cask-design
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of the storage pool in independent spent fuel storage installations (ISFSIs).
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
This paper provides a brief description of the United States Nuclear Regulatory Commission (NRC) and its regulatory process for the current nuclear fuel cycle for light water power reactors (LWRs). It focuses on the regulatory framework for the licensing of facilities in the fuel cycle. The first part of the paper provides an overview of the NRC and its regulatory program including a description of its organization, function, authority, and responsibilities.
Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transporation of Used Fuel Rev. 1
Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transporation of Used Fuel Rev. 1
Because there is currently no designated disposal site for used nuclear fuel in the United States, the nation faces the prospect of extended long‐term storage (i.e., >60 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S.
slides - Cook Nuclear Plant, Dry Cask Loading & Storage
slides - Cook Nuclear Plant, Dry Cask Loading & Storage
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
In July 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office
(SFPO) issued Interim Staff Guidance 8 Revision 1 (ISG8R1) to provide recommendations for the use
of burnup credit in storage and transport of pressurized-water reactor (PWR) spent fuel. Subsequent to
the issuance of ISG8R1, the NRC Office of Regulatory Research (RES) has directed an effort to
investigate the technical basis for extending the criteria and recommendations of ISG8R1 to allow
Key Issues Associated with Interim Storage of Used Nuclear Fuel
Key Issues Associated with Interim Storage of Used Nuclear Fuel
The issue of interim storage of used (spent)1 fuel is dependent on a number of key factors, some
of which are not known at this time but are the subject of this study. The first is whether or not
the Yucca Mountain Project continues or is cancelled such that it may be able to receive spent
fuel from existing and decommissioned nuclear power stations. The second is whether the United
States will pursue a policy of reprocessing and recycling nuclear fuel. The reprocessing and
slides - Dry Storage Cask Thermal Analyses
slides - Dry Storage Cask Thermal Analyses
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - LACBWR Dry Cask Storage
slides - LACBWR Dry Cask Storage
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Geological Disposal of Radioactive Waste
Geological Disposal of Radioactive Waste
The objective of this safety requirements publication is to set down the protection objectives and criteria for geological disposal and to establish the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management.
slides - Cumulative Impact of Regulatory Actions Dry Fuel Storage
slides - Cumulative Impact of Regulatory Actions Dry Fuel Storage
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Vision/Proposed Actions for Regulatory Improvements - Looking to the Future
slides - Vision/Proposed Actions for Regulatory Improvements - Looking to the Future
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Exelon Dry Cask Storage Program, 2012 Campaign Summary
slides - Exelon Dry Cask Storage Program, 2012 Campaign Summary
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Dry Storage of Used Fuel Transition to Transport FCRD-UFD-2012-000253
Dry Storage of Used Fuel Transition to Transport FCRD-UFD-2012-000253
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
The amount of spent fuel stored on-site at commercial nuclear reactors will continue to accumulate—increasing by about 2,000 metric tons per year and likely more than doubling to about 140,000 metric tons—before it can be moved off-site, because storage or disposal facilities may take decades to develop. In examining centralized storage or permanent disposal options, GAO found that new facilities may take from 15 to 40 years before they are ready to begin accepting spent fuel. Once an off-site facility is available, it will take several more decades to ship spent fuel to that facility.