Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Abstraction of Drift Seepage
Abstraction of Drift Seepage
This model report documents the abstraction of drift seepage, conducted to provide seepage relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts.
Evaluation of Waste Stream Receipt Scenarios for Repository Loading
Evaluation of Waste Stream Receipt Scenarios for Repository Loading
The purpose of this calculation is to simulate the processing of an incoming waste stream into waste packages, simulating the required aging as applicable, and the emplacement of the waste packages into the Yucca Mountain repository.
Drift Scale THM Model
Drift Scale THM Model
This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts.
Thermal Management Flexibility Analysis
Thermal Management Flexibility Analysis
The purpose of this report is to demonstrate that postclosure temperature limits can be met, and certain thermal characteristics of the postclosure thermal reference case can be preserved, with alternative thermal loading schemes. The analysis considers certain variations from the base case.waste stream, the predicted postclosure temperatures that develop within the rock mass due to these waste stream variations, and then compares these temperatures to postclosure temperature limits.
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.
Thermal Loading Study of the TAD Waste Package
Thermal Loading Study of the TAD Waste Package
The objective of this calculation is to evaluate the peak temperatures due to thermal loading and boundary conditions of the TAD Waste Package design under nominal Monitored Geologic Repository conditions.
Aging and Phase Stability of Waste Package Outer Barrier
Aging and Phase Stability of Waste Package Outer Barrier
This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.
Design Evolution Study: Thermal Operating Methodology
Design Evolution Study: Thermal Operating Methodology
This study provides results supporting the conclusion that the repository can be operated over a varying range of thermal modes and therefore temperatures. In particular, this work focused on limiting the peak, postclosure waste package surface temperature to less than 85 degrees Celsius, a possible limit due to corrosion considerations. These operating modes were compared by varying the waste package in drift spacing (0.1-2.83 meters), drift pitch (drift spacing centerline to centerline of 40-120 meters), ventilation duration (75-300 years), and ventilation efficiency (50-80%).
Multiscale Thermohydrologic Model
Multiscale Thermohydrologic Model
The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Postclosure Analysis of the Range of Design Thermal Loadings
Postclosure Analysis of the Range of Design Thermal Loadings
This report presents a two-phased approach to develop and analyze a “thermal envelope” to represent the postclosure response of the repository to the anticipated range of repository design thermal loadings. In Phase 1 an estimated limiting waste stream (ELWS) is identified and analyzed to determine the extremes of average and local thermal loading conditions. The coldest thermal loading condition is represented by an emplacement drift loaded exclusively with high-level radioactive waste (HLW) and/or defense spent nuclear fuel (DSNF).
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
Stakeholder Involvement in Decision Making: A Short Guide to Issues, Approaches and Resources
Stakeholder Involvement in Decision Making: A Short Guide to Issues, Approaches and Resources
Radioactive waste management is embedded in broader societal issues such as the
environment, risk management, energy, health policy and sustainability. In all
these fields, there is an increasing demand for public involvement, participation
and engagement. Involvement may take different forms at different phases and
can include sharing information, consulting, dialoguing or deliberating on
decisions with relevant stakeholders. Stakeholder involvement should be seen as a
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
Our basic position is that the outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
Stakeholder Involvement and Confidence in the Process of Decision-making for the Disposal of Spent Nuclear Fuel in Finland
CORWM’S ADVICE TO GOVERNMENT ON OPTIONS FOR THE ACCELERATION OF THE IMPLEMENTATION OF GEOLOGICAL DISPOSAL
CORWM’S ADVICE TO GOVERNMENT ON OPTIONS FOR THE ACCELERATION OF THE IMPLEMENTATION OF GEOLOGICAL DISPOSAL
This paper is a response to a request from the Department of Energy and Climate Change (DECC) for CoRWM’s advice on the 2011 review of options for accelerating the geological disposal programme carried out by the Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA).
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
The long-term governance of radioactive waste is complex socio-technical issue. The disposition of radioactive waste is decided on ethical grounds, having to take into account a variety of other dimensions (society, economy, ecology, politics, time, space, and technology). Thereto, a study of variants is required. Decision theory, in principle, takes diverse options as a starting point begin as the basis of a decision.
WP 2 Appendix 8 Mechanisms for Local Influence on National Decision Making Processes in Radioactive Waste Management
WP 2 Appendix 8 Mechanisms for Local Influence on National Decision Making Processes in Radioactive Waste Management
This document develops further the questions offered to stakeholders in the Berlin Meeting (see Appendix). It describes mechanisms that local stakeholders can use to influence national decision-making processes in radioactive waste management.
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
The outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
Final Report: Influence of Local Actors on National Decision-making Processes WP2
Final Report: Influence of Local Actors on National Decision-making Processes WP2
Work Package 2 (WP2) focused on the ways in which local stakeholders can influence national decision-making processes on radioactive waste management (RWM). The participants in WP2 were particularly interested in examining how local stakeholders could contribute to national debates. Their interest stemmed from the fact that participants from France, Spain and the United Kingdom — who made up the majority of the WP2 group — were engaged, as stakeholders, in the decision-making processes that were under way in each of those countries.
Identifying remaining socio-technical challenges at the national level: Hungary
Identifying remaining socio-technical challenges at the national level: Hungary
This paper summarises the history of RWM in Hungary, with a special attention to changing decision making approaches, social conflicts, and socio-technical challenges. First the institutional background of RWM is outlined. Next, efforts to build facilities for the management of low- and intermediatelevel waste (L/ILRW) and high-level waste (HLW) are summarized. This is followed by the short description of remaining socio-technical challenges. Finally, changes in decision-making approaches and tools are analysed.
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Work Package 3 (WP 3) set out to provide practical recommendations for the design and implementation of a “robust” decision-making process (DMP) in radioactive waste governance/governance of radioactive waste management (RWG).