Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
In 2007 the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee
(RWMC) launched a four-year project on the topics of reversibility and retrievability in geological
disposal. The goal of the project studies and activities (www.oecd-nea.org/rwm/rr) was to
acknowledge the range of approaches to reversibility and retrievability (R&R), rather than to
recommend a specific approach, and to provide a basis for reflection rather than to lead towards
Isotopic Generation and Verification of the PWR Application Model
Isotopic Generation and Verification of the PWR Application Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volume I and Volume II (Appendices)
Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volume I and Volume II (Appendices)
This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation. Relevant policy questions this study can help inform include the following: Is a “one-size-fits–all” repository a good strategic option for disposal? Do
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this analysis is to evaluate the transient behavior and consequences of a worst case criticality event involving intact pressurized water reactor (PWR) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR assembly waste package (WP). The objective of this analysis is to demonstrate that the consequences of a worst case criticality event involving intact PWR SNF are insignificant in their effect on the overall radioisotopic inventory in a WP. An internal WP criticality is modeled in a manner analogous to transient phenomena in a nuclear reactor core.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Cost Estimation Inputs for SNF Geologic Disposal Concepts
Cost Estimation Inputs for SNF Geologic Disposal Concepts
A set of 16 geologic disposal concepts is described in sufficient detail for rough-order-of-magnitude repository cost estimates, for disposal of spent nuclear reactor fuel in generic crystalline, argillaceous, and salt host geologic media. The description includes total length, diameter, and volume for all underground shafts, ramps, drifts and large-diameter borings. Basic types of ground support are specified. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel, but concepts are described in terms of modular panels each containing 10,000 MT.
Dossier 2005 Argile-Architecture and Management of a Geological Repository
Dossier 2005 Argile-Architecture and Management of a Geological Repository
The Law of 30 December 1991 Loi n¯ 91-1381 du 30 dÇcembre 1991 relative aux recherches sur la gestion des dÇchets radioactifs. conferred on Andra the task of assessing the feasibility of a high-level, long-lived waste (HLLL waste) repository in a deep geological formation. This volume of the Dossier 2005 Argile reports on the results of the study from the standpoint of the architecture and management of such a repository. It is based on the characteristics of the clay formation studied in an underground research laboratory located in the Meuse and Haute-Marne departments.
Slides - Geologic Disposal - Elements of Technical Credible, Workable, and Publicly Acceptable Regulations
Slides - Geologic Disposal - Elements of Technical Credible, Workable, and Publicly Acceptable Regulations
Presented to the Blue Ribbon Commission on America's Nuclear Future Subcommittee on Disposal
Summary Statement - Regulations for Geological Disposal of High-Level Radioactive Waste
Summary Statement - Regulations for Geological Disposal of High-Level Radioactive Waste
Presented on September 2010 to the Blue Ribbon Commission on America's Nuclear Future (Disposal Subcommittee)
Slides - Briefing on the Draft Area Recommendation Report - Crystalline Repository Project
Slides - Briefing on the Draft Area Recommendation Report - Crystalline Repository Project
Crystalline Repository Project Briefing
Environmental Views on the Geologic Disposal of Nuclear Materials
Environmental Views on the Geologic Disposal of Nuclear Materials
Presented at the International Conference on Geologic Repositories, Denver, CO, November 1, 1999
Geological Disposal of Nuclear Waste
Geological Disposal of Nuclear Waste
19th Annual Symposium-Geological Disposal of Nuclear Waste
Monitoring of Geological Disposal Facilities: Technical and Societal Aspects
Monitoring of Geological Disposal Facilities: Technical and Societal Aspects
Each and every geological disposal project requires the collection of large amounts of information on
its progress throughout the facility’s lifecycle. This information is based on the monitoring and
surveillance of the selected site, built structures and their surrounding environment. Monitoring is carried
out to assist in the decision-making process, to collect site-relevant information for the creation of an
environmental database, to gain an understanding and to verify the performance of the disposal system, to
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
This report aims to clarify the dynamics of socio-technical challenges in the implementation of geological disposal (GD) for High Level Waste (HLW) and Spent Nuclear Fuel (SNF). Drawing on the 14 country reports produced within InSOTEC’s WP1 the synthesis focuses on socio-technical challenges that appear across national contexts. The synthesis report elucidates issues made visible through bringing together the analyses of different national contexts.
Decision-making and Responsibilities within the Process of Providing Robust Interim Storage and the Implementation of Geological Disposal
Decision-making and Responsibilities within the Process of Providing Robust Interim Storage and the Implementation of Geological Disposal
This paper summarises CoRWM’s understanding of:<br><br>The roles and responsibilities of the organisations that are involved in the management of radioactive waste, <br>Decision-making on Government policy, <br>Decision-making on the governance of the NDA, <br>Decision-making on waste conditioning, packaging and storage and <br>Decision-making in the implementation of geological disposal.
2008 Activity Report
Delay in Finnish Repository Licence Review
Delay in Finnish Repository Licence Review
The Finnish nuclear regulator needs another six months to review Posiva's application to build a waste encapsulation plant and a final repository at Olkiluoto.