Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Probability of Criticality Before 10,000 Yearrs
Probability of Criticality Before 10,000 Yearrs
The first objective of this calculation is the identification of the degraded configurations of the Enhanced Design Alternatives (EDA) II design that have some possibility of criticality and that can occur within 10,000 years of placement in the repository. The next objective is to evaluate the criticality of these configurations and to estimate the probability of occurrence for those configurations that could support criticality.
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
The purpose of this calculation is to perform an example criticality evaluation for degraded internal configurations of a boiling water reactor (BWR) waste package (WP) containing 44 spent nuclear fuel (SNF) assemblies.
DSNF and Other Waste Form Degradation Abstraction
DSNF and Other Waste Form Degradation Abstraction
Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of The North Shore
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of The North Shore
On March 21, 2012, the Township of The North Shore expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Geofirma Engineering Ltd., to evaluate the potential suitability of the Township of The North Shore against five screening criteria using readily-available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA’S USED NUCLEAR FUEL - Corporation of the Municipality of Arran-Elderslie
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA’S USED NUCLEAR FUEL - Corporation of the Municipality of Arran-Elderslie
On June 25, 2012 the Corporation of the Municipality of Arran-Elderslie expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by AECOM, to evaluate the potential suitability of the Municipality of Arran-Elderslie against five screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Schreiber
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Schreiber
On September 28, 2010, the Township of Schreiber expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Schreiber area against five screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of White River
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of White River
On April 11, 2012 the Township of White River expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the White River area against five initial screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Nipigon
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Nipigon
On November 9, 2011, the Township of Nipigon expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel ( NWMO, 2010). This report presents the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Nipigon area against five initial screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Ear Falls, Ontario
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Ear Falls, Ontario
On August 26, 2010, the Township of Ear Falls expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Ear Falls area against five screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - City of Elliot Lake
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - City of Elliot Lake
On March 12, 2012, the City of Elliot Lake expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Geofirma Engineering Ltd., to evaluate the potential suitability of the City of Elliot Lake against five screening criteria using readilyavailable information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Corporation of the Municipality of South Bruce
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Corporation of the Municipality of South Bruce
On, March 27, 2012, the Corporation of the Municipality of South Bruce expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by AECOM, to evaluate the potential suitability of the Municipality of South Bruce against five screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Red Rock
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Township of Red Rock
On February 25, 2011, the Township of Red Rock expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s use d nuclear fuel (NWMO, 2010). This report presents the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Red Rock area against five initial screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Town of Spanish
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Town of Spanish
On March 21, 2012, the Town of Spanish expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Geofirma Engineering Ltd., to evaluate the potential suitability of the Town of Spanish against five screening criteria using readily available information.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Town of Blind River, Ontario
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Town of Blind River, Ontario
On March 19, 2012, the Town of Blind River expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Geofirma Engineering Ltd., to evaluate the potential suitability of the Town of Blind River against five screening criteria using readilyavailable information.