Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
OECD/NEA: Belgium
OECD/NEA: Belgium
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium Fourth Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report
Kingdom of Belgium Fourth Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report
On 8 December 1997 Belgium signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention by the Law of 2 August 2002. The ratification followed on 5 September 2002. The Convention became effective on 4 December 2002, i.e. 90 days following ratification. Belgium belongs to the group of Contracting Parties having at least one operational nuclear power plant on their territory.
Technical overview of the SAFIR 2 report: Safety Assessment and Feasibility Interim Report 2
Technical overview of the SAFIR 2 report: Safety Assessment and Feasibility Interim Report 2
This document is the technical overview of the SAFIR 2 report that synthesises all of the technical and scientific knowledge available at the end of the second phase (1990–2000) of the ONDRAF/NIRAS programme of methodological research and development on the final disposal of category B and C waste in a poorly-indurated clay formation. The SAFIR 2 report will be handed over by ONDRAF/NIRAS to its supervisory Minister at the beginning of 2002, after publication approval by its Board of Directors.
Identifying remaining socio-technical challenges at the national level: Belgium
Identifying remaining socio-technical challenges at the national level: Belgium
This report is part of the research project International Socio-Technical Challenges for Implementing Geological Disposal: InSOTEC (see www.insotec.eu), funded by the European Commission under the Seventh Framework Programme.<br/>This report is a contribution to Work Package 1 of the project, which aims to identify the most significant socio-technical challenges related to geological disposal of radioactive waste. To achieve this objective, a comparative analysis of 14 national programmes will be performed.