Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
The development of radioactive waste repositories involves consideration of how the waste and the
engineered barrier systems will evolve, as well as the interactions between these and, often relatively
complex, natural systems. The timescales that must be considered are much longer than the timescales
that can be studied in the laboratory or during site characterisation. These and other factors can lead to
various types of uncertainty (on scenarios, models and parameters) in the assessment of long-term,
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Probability of Criticality Before 10,000 Yearrs
Probability of Criticality Before 10,000 Yearrs
The first objective of this calculation is the identification of the degraded configurations of the Enhanced Design Alternatives (EDA) II design that have some possibility of criticality and that can occur within 10,000 years of placement in the repository. The next objective is to evaluate the criticality of these configurations and to estimate the probability of occurrence for those configurations that could support criticality.
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
The purpose of this calculation is to perform an example criticality evaluation for degraded internal configurations of a boiling water reactor (BWR) waste package (WP) containing 44 spent nuclear fuel (SNF) assemblies.
DSNF and Other Waste Form Degradation Abstraction
DSNF and Other Waste Form Degradation Abstraction
Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB’s application for a final repository. The purposes of the safety assessment SR-Can are the following:
1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant.
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
In RD&D-Programme 92, SKB presented a partially new strategy for its activities. The new strategy entailed a focusing and concentration on the implementation of deep disposal of a limited quantity (about 800 tonnes) of encapsulated spent nuclear fuel during the coming 20-year period. Following this initial deposition, the results of the work will be evaluated, and only then will a decision be taken as to how and when regular deposition of the main body of the fuel and other long-lived nuclear waste will take place.
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
This work was performed to suggest possible strategies for geoscientific classifications in the siting process of a high-level repository. To develop a feasible method for geoscientific classifications, a number of factors of a philosophical character, related to the purpose of the classifications, need to be accounted for. Many different approaches can be visualized, and this report was not intended to present a complete classification methodology.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Spent fuel in Sweden emanates mainly from four commercial nuclear power plants. In addition there is one material testing reactor and one research reactor. The radioactive waste originates from the nuclear power industry as well as medical use, industry, research and consumer products.