Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories.
Korean Third National Report under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
Korean Third National Report under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
The government of the Republic of Korea, as a contracting party to the Joint<br/>Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive<br/>Waste Management (hereinafter referred to as “Joint Convention”) which entered into<br/>force on June 18, 2001, and deposited the ratification of on September 16, 2002,<br/>described the state of implementing the contracting party’s obligations in the Third<br/>National Report, pursuant to Article 32 (Reporting) of the Joint Convention.<br/>This National Report was prepared in accordance wi
Korean Second National Report Under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Korean Implementation of the Obligations of the Joint Convention Second Review Meeting
Korean Second National Report Under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Korean Implementation of the Obligations of the Joint Convention Second Review Meeting
The Korean government has maintained a consistent national policy for stable energy supply by fostering nuclear power industries under the insufficient energy resources in the country. Nuclear power reached approximately 40 % of total domestic electricity generation. Since the commencement of the first commercial operation of Kori Unit 1 in April 1978, 20 units of NPPs are commercially operating as of October 2005. Four units out of the 20 operating NPPs are Pressurized Heavy Water Reactors (PHWRs) at Wolsong.