Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s spent fuel management and fuel cycle programs are now at a critical stage. Its first commercial-scale reprocessing plant, at Rokkasho Village, will soon start full-scale operation.
Locating a radioactive waste repository in the ring of fire
Locating a radioactive waste repository in the ring of fire
The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection.
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
As outlined in the overall program for high-level waste (HLW) management in Japan, defined by the Atomic Energy Commission (AEC), HWL separated from spent nuclear fuel during reprocessing will be immobilized in a glass matrix and stored for a period of 30 to 50 years to allow cooling; it will then be disposed of in a stable deep geological formation.
Evaluating Site Suitability for a HLW Repository
Evaluating Site Suitability for a HLW Repository
The primary objective of government policy, and of NUMO in implementing this policy, is to
ensure that a repository for Japan’s high-level radioactive waste is located so as to provide
secure isolation of the waste and adequate safety for present and future generations. This
means that the site has to be chosen carefully, taking full account of all its characteristics. In
order to address these characteristics in an orderly and structured manner, we have established
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
Radioactive waste is produced from a wide range of human activities. The wastes arising from the nuclear fuel cycle occur as a wide range of materials and in many different physical and chemical forms, contaminated with varying activities of radionuclides. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The safe disposal of radioactive waste is a key reequirement of the nuclear industry worldwide.
The NUMO Structured Approach to HLW Disposal in Japan
The NUMO Structured Approach to HLW Disposal in Japan
The constraints set by the Japanese HLW disposal programme – particularly associated with
the decision to initiate siting by an open call for volunteers to host a geological repository –
pose particular challenges for repository project management. In order to maintain the
flexibility required to respond to the conditions found at volunteer sites, NUMO has not
published reference designs or site characterisation plans, as is normal for programmes
progressing by site nomination. Instead, we have developed a methodology – the NUMO
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
In July 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office
(SFPO) issued Interim Staff Guidance 8 Revision 1 (ISG8R1) to provide recommendations for the use
of burnup credit in storage and transport of pressurized-water reactor (PWR) spent fuel. Subsequent to
the issuance of ISG8R1, the NRC Office of Regulatory Research (RES) has directed an effort to
investigate the technical basis for extending the criteria and recommendations of ISG8R1 to allow
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing
Advances in Applications of Burnup Credit to Enhance Spent Fuel Transportation, Storage, Reprocessing and Disposition-Proceedings of a Technical Meeting held in London, 29 August-2 September 2006
Advances in Applications of Burnup Credit to Enhance Spent Fuel Transportation, Storage, Reprocessing and Disposition-Proceedings of a Technical Meeting held in London, 29 August-2 September 2006
This publication records the proceedings of a technical meeting organized by the IAEA and
held in London 29 August–2 September 2005 with sixty participants from 18 countries. As
indicated in the title, the objective of this meeting was to provide a forum for exchange of
technical information on spent fuel burnup credit applications and thereby compile state-ofthe-
art information on technical advances related to spent fuel transportation, storage,
reprocessing and disposition.
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
In the year 2000, the geological disposal program for high-level radioactive waste in Japan moved from the phase of generic research and development (R&D) into the phase of implementation. Following legislation entitled the “Specified Radioactive Waste Final Disposal Act”, the Nuclear Waste Management Organization of Japan (NUMO) was established as the implementing organization.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Nuclear facilities in Japan are as listed in the following table, the details of which are described in Section D.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Fourth Review Meeting
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Fourth Review Meeting
Nuclear facilities in Japan are listed in Table A1-1, the details of which are described in Section D.<br/>The overview of spent fuel management and radioactive waste management and the current<br/>status of the preparation of radioactive waste disposal regulation system are shown in Table<br/>A1-2 and Table A1-3 respectively.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting - Annexes
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting - Annexes
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting - Annexes