Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s spent fuel management and fuel cycle programs are now at a critical stage. Its first commercial-scale reprocessing plant, at Rokkasho Village, will soon start full-scale operation.
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
Locating a radioactive waste repository in the ring of fire
Locating a radioactive waste repository in the ring of fire
The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection.
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
As outlined in the overall program for high-level waste (HLW) management in Japan, defined by the Atomic Energy Commission (AEC), HWL separated from spent nuclear fuel during reprocessing will be immobilized in a glass matrix and stored for a period of 30 to 50 years to allow cooling; it will then be disposed of in a stable deep geological formation.
Evaluating Site Suitability for a HLW Repository
Evaluating Site Suitability for a HLW Repository
The primary objective of government policy, and of NUMO in implementing this policy, is to
ensure that a repository for Japan’s high-level radioactive waste is located so as to provide
secure isolation of the waste and adequate safety for present and future generations. This
means that the site has to be chosen carefully, taking full account of all its characteristics. In
order to address these characteristics in an orderly and structured manner, we have established
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
Radioactive waste is produced from a wide range of human activities. The wastes arising from the nuclear fuel cycle occur as a wide range of materials and in many different physical and chemical forms, contaminated with varying activities of radionuclides. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The safe disposal of radioactive waste is a key reequirement of the nuclear industry worldwide.
The NUMO Structured Approach to HLW Disposal in Japan
The NUMO Structured Approach to HLW Disposal in Japan
The constraints set by the Japanese HLW disposal programme – particularly associated with
the decision to initiate siting by an open call for volunteers to host a geological repository –
pose particular challenges for repository project management. In order to maintain the
flexibility required to respond to the conditions found at volunteer sites, NUMO has not
published reference designs or site characterisation plans, as is normal for programmes
progressing by site nomination. Instead, we have developed a methodology – the NUMO
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
UFD Storage and Transportation - Transportation Working Group Report
UFD Storage and Transportation - Transportation Working Group Report
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011).
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
In the year 2000, the geological disposal program for high-level radioactive waste in Japan moved from the phase of generic research and development (R&D) into the phase of implementation. Following legislation entitled the “Specified Radioactive Waste Final Disposal Act”, the Nuclear Waste Management Organization of Japan (NUMO) was established as the implementing organization.
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this country has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values.
Everything You Ever Wanted to Know about Radioactive Waste Management
Everything You Ever Wanted to Know about Radioactive Waste Management
Explanation of Radioactivity and Radioactive waste
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.