Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
BRC Staff Draft - Background Paper on Commingling of Defense and Commercial Waste
BRC Staff Draft - Background Paper on Commingling of Defense and Commercial Waste
CRS Report for Congress, Civilian Nuclear Spent Fuel Temporary Storage Options
CRS Report for Congress, Civilian Nuclear Spent Fuel Temporary Storage Options
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a
permanent underground repository for highly radioactive spent fuel from nuclear reactors,
but delays have pushed back the facility’s opening date to 2010 at the earliest. In the
meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000
metric tons per year. Major options for managing those growing quantities of nuclear spent
fuel include continued storage at reactors, construction of a DOE interim storage site near
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Validation Issues for Depletion and Criticality Analysis in Burnup Credit
Validation Issues for Depletion and Criticality Analysis in Burnup Credit
This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage,
and disposal. The issues discussed are ones that have been identified by one or more constituents of the
United States technical community (national laboratories, licensees, and regulators) that have been exploring the
use of burnup credit. There is not necessarily agreement on the importance of the various issues, which
sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data
Phenomena and Parameters Important to Burnup Credit
Phenomena and Parameters Important to Burnup Credit
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and
parameters important to implementation of burnup credit in out-of-reactor applications involving pressurizedwater-
reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR)
spent fuel have been more limited. This paper reviews the knowledge and experience gained from work
performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis
Temperature Effects on Reactivity of Commercial Reactor Criticals
Temperature Effects on Reactivity of Commercial Reactor Criticals
Temperature Effects on Reactivity of Commercial Reactor Criticals
Temperature Effects on Reactivity of Commercial Reactor Criticals
Overview of the Burnup Credit Activities at OECD/NEA/NSC
Overview of the Burnup Credit Activities at OECD/NEA/NSC
Value Rankings of Selected Critical Experiments for Burnup Credit Validations
Value Rankings of Selected Critical Experiments for Burnup Credit Validations
The Effect of Half-Life and Branching Fraction Uncertainties on the Effective Neutron Multiplication Factor
The Effect of Half-Life and Branching Fraction Uncertainties on the Effective Neutron Multiplication Factor
Dry Cask Storage and Transportation Burnup Credit
Dry Cask Storage and Transportation Burnup Credit
NRC Burnup Credit Research Program
NRC Burnup Credit Research Program
The Nuclear Energy Research Initiative Burnup Credit Critical Experiment
The Nuclear Energy Research Initiative Burnup Credit Critical Experiment
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
IAEA TCM 2000: An International Meeting on Burnup Credit Applications
IAEA TCM 2000: An International Meeting on Burnup Credit Applications
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties.
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
In January 1999, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive
Waste Management (OCRWM) submitted the Disposal Criticality Analysis Methodology
Topical Report, Revision 0 (TR) to the U.S. Nuclear Regulatory Commission (NRC) for
review and approval. The TR presents an overall approach for consideration of postclosure
disposal criticality of commercial and defense high-level waste to be placed at
the proposed Yucca Mountain site. During the course of the review and interactions
Applicability of CRC Benchmark Experiments for Burnup Credit Validation
Applicability of CRC Benchmark Experiments for Burnup Credit Validation
Disposal Criticality Analysis Methodology Topical Report
Disposal Criticality Analysis Methodology Topical Report
The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout.
Axial Burnup Profile Database for Pressurized Water Reactors
Axial Burnup Profile Database for Pressurized Water Reactors
The data were obtained directly from utilities whose reactors represent the range of commercial PWR fuel lattices. The work was performed by Yankee Atomic Electric for Sandia National Laboratory. All axial burnup profiles were calculated from 3-D depletion analyses of the core configuration. The organizations and utilities providing axial burnup profiles for the database used different model codes for the 3D-depletion calculations. The model codes used were: SIMULATE-3, NEMO, ANC, and PRESTO-II. Cross-section inputs describing the assemblies are derived from assembly lattice calculations.
Regulations for the Safe Transport of Radioactive Material - 2005 Edition
Regulations for the Safe Transport of Radioactive Material - 2005 Edition
101. These Regulations establish standards of safety which provide an
acceptable level of control of the radiation, criticality and thermal hazards to
persons, property and the environment that are associated with the transport of
radioactive material. These Regulations utilize the principles set forth in both
the “Radiation Protection and the Safety of Radiation Sources”, Safety Series
No. 120 [1] and the “International Basic Safety Standards for Protection
against Ionizing Radiation and for the Safety of Radiation Sources”, Safety
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
This standard provides criteria for accounting for reactivity effects of fuel irradiation and radioactive decay in criticality safety control of storage, transportation, and disposal of commercial LWR UO2 fuel assemblies.
This standard assumes the fuel and any fixed burnable absorbers are contained in an intact assembly. Additional considerations could be necessary for fuel assemblies that have been disassembled, consolidated, damaged, or reconfigured in any manner.