Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
BWR Axial Profile
BWR Axial Profile
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
ANS Response and Comments on Nuclear Waste Administration Act of 2013 Draft
ANS Response and Comments on Nuclear Waste Administration Act of 2013 Draft
The American Nuclear Society (ANS) appreciates the opportunity to comment on the draft Nuclear Waste Administration Act (NWAA). The ANS is a not-for-profit, international, scientific, and educational organization with nearly 12,000 members worldwide. The core purpose of ANS is to promote awareness and understanding of the application of nuclear science and technology. As an organization, it has published a number of position statements regarding the issue of spent fuel and radioactive waste.
ANS Position Statement: Interim Storage of Used or Spent Nuclear Fuel
ANS Position Statement: Interim Storage of Used or Spent Nuclear Fuel
The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim
storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition
can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commission’s (NRC’s)
determination that “spent fuel generated in any reactor can be stored safely and without significant
environmental impacts for at least 30 years beyond the licensed life for operation.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
ANS Position Statement: Creation of an Independent Entity to Manage U.S. Used Nuclear Fuel
ANS Position Statement: Creation of an Independent Entity to Manage U.S. Used Nuclear Fuel
It is increasingly apparent that the United States will require a large expansion of nuclear power
generation capacity to meet its future baseload electricity needs while reducing greenhouse gas
emissions. As a result, Congress and the Administration must act to update U.S. nuclear fuel
cycle policy to address these realities. This will likely require a multifaceted approach involving
some combination of on-site/centralized dry cask interim storage, nuclear fuel recycling, and
emplacement of high-level wastes in long-term geological storage.
ANS Position Statement: The Safety of Transporting Radioactive Materials
ANS Position Statement: The Safety of Transporting Radioactive Materials
More than 45 million shipments of radioactive materials have taken place in the United States
over the last three decades, with a current rate of about three million per year. The majority of
these radioactive shipments consist of radiopharmaceuticals, luminous dials and indicators,
smoke detectors, contaminated clothing and equipment, and research and industrial sources.
Fewer than 3,500, or 0.01%, have been involved in any sort of accident, incident, or anything
PWR Axial Profile Evaluation
PWR Axial Profile Evaluation
This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.
ANS Position Statement: Licensing of Yucca Mountain as a Geological Repository for Radioactive Wastes
ANS Position Statement: Licensing of Yucca Mountain as a Geological Repository for Radioactive Wastes
The American Nuclear Society (ANS) supports (1) the development and use of geological
repositories for disposal of high-level radioactive wastes and (2) expeditious processing of the
Yucca Mountain license application in an open, technically sound manner. Geological disposal
means placing the wastes hundreds of feet underground and far from the biosphere. The U.S.
Nuclear Regulatory Commission (NRC) is following a legislatively well-defined regulatory
process to evaluate the safety of the proposed Yucca Mountain Site to meet both the scientific
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) initiated a research program
to support the development of technical bases and guidance that would facilitate the implementation of burnup
credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of
investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for
assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this country has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values.
Everything You Ever Wanted to Know about Radioactive Waste Management
Everything You Ever Wanted to Know about Radioactive Waste Management
Explanation of Radioactivity and Radioactive waste
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
The United States of America ratified the “Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management” (Joint Convention) on April 9, 2003. The Joint Convention establishes an international peer review process among Contracting Parties and provides incentives for nations to take appropriate steps to bring their nuclear activities into compliance with general safety standards and practices. This first Review Meeting of the Contracting Parties under the Joint Convention is scheduled to take place in November 2003 in Vienna, Austria.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Finland signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management on 2 October 1997 and deposited the tools of acceptance on 10 February 2000. The Convention entered into force on 18 June 2001. The major generators of radioactive waste in Finland are the two nuclear power plants, the Loviisa and Olkiluoto plants. The Loviisa plant has two PWR units, operated by Fortum Power and Heat Oy, and the Olkiluoto plant two BWR units, operated by Teollisuuden Voima Oy.
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Denmark signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management 29 September 1997, the day it opened for signature. The Convention was accepted 3 September 1999 by letter from the Foreign Ministry to the International Atomic Energy Agency (IAEA). Until further notice the Convention does not apply for the autonomous territories Greenland and the Faroe Islands, which both do not possess spent nuclear fuel or radioactive waste. The present report is the Danish National Report for the Second Review Meeting to the Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Nuclear facilities in Japan are as listed in the following table, the details of which are described in Section D.