Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
slides - Operating Experience, Session I, Cask Cranes
slides - Operating Experience, Session I, Cask Cranes
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Infrastructure
slides - Transportation Infrastructure
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Readiness
slides - Transportation Readiness
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Vendor Perspective on Spent Fuel Pool Criticality Analysis
slides - Vendor Perspective on Spent Fuel Pool Criticality Analysis
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Cumulative Impact of Industry and NRC Actions
slides - Cumulative Impact of Industry and NRC Actions
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Direct Disposal of Dual-Purpose Canisters - Options for Assuring Criticality Control
Direct Disposal of Dual-Purpose Canisters - Options for Assuring Criticality Control
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Observations on Key Storage and Transport Technical Issues
slides - Observations on Key Storage and Transport Technical Issues
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
slides - Transportation Planning Considerations: BRC Report Recommendations and Plans for Implementation
slides - Transportation Planning Considerations: BRC Report Recommendations and Plans for Implementation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Readiness
slides - Transportation Readiness
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Advancing the Used Fuel Management Agenda
slides - Advancing the Used Fuel Management Agenda
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Flexible Integrated Modular Nuclear Fuel Canister System
Flexible Integrated Modular Nuclear Fuel Canister System
Slides, Spark Presentation
Phenomena and Parameters Important to Burnup Credit
Phenomena and Parameters Important to Burnup Credit
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and
parameters important to implementation of burnup credit in out-of-reactor applications involving pressurizedwater-
reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR)
spent fuel have been more limited. This paper reviews the knowledge and experience gained from work
performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties.
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
In January 1999, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive
Waste Management (OCRWM) submitted the Disposal Criticality Analysis Methodology
Topical Report, Revision 0 (TR) to the U.S. Nuclear Regulatory Commission (NRC) for
review and approval. The TR presents an overall approach for consideration of postclosure
disposal criticality of commercial and defense high-level waste to be placed at
the proposed Yucca Mountain site. During the course of the review and interactions
Disposal Criticality Analysis Methodology Topical Report
Disposal Criticality Analysis Methodology Topical Report
The fundamental objective of this topical report is to present the planned risk-informed disposal criticality analysis methodology to the NRC to seek acceptance that the principles of the methodology and the planned approach to validating the methodology are sound. The design parameters and environmental assumptions within which the waste forms will reside are currently not fully established and will vary with the detailed waste package design, engineered barrier design, repository design, and repository layout.
Regulations for the Safe Transport of Radioactive Material - 2005 Edition
Regulations for the Safe Transport of Radioactive Material - 2005 Edition
101. These Regulations establish standards of safety which provide an
acceptable level of control of the radiation, criticality and thermal hazards to
persons, property and the environment that are associated with the transport of
radioactive material. These Regulations utilize the principles set forth in both
the “Radiation Protection and the Safety of Radiation Sources”, Safety Series
No. 120 [1] and the “International Basic Safety Standards for Protection
against Ionizing Radiation and for the Safety of Radiation Sources”, Safety
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
This standard provides criteria for accounting for reactivity effects of fuel irradiation and radioactive decay in criticality safety control of storage, transportation, and disposal of commercial LWR UO2 fuel assemblies.
This standard assumes the fuel and any fixed burnable absorbers are contained in an intact assembly. Additional considerations could be necessary for fuel assemblies that have been disassembled, consolidated, damaged, or reconfigured in any manner.
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
The Interim Staff Guidance on burnup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission’s Spent Fuel Project Office, recommends a burnup measurement for each assembly to confirm the reactor record and compliance with the assembly burnup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained.