Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Summary Report of Commercial Reactor Criticality Data for Davis-Besse Unit 1
Summary Report of Commercial Reactor Criticality Data for Davis-Besse Unit 1
The "Summary Report of Commercial Reactor Criticality Data for Davis-Besse Unit 1" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Davis-Besse Unit 1 reactor.
slides - Operating Experience, Session I, Cask Cranes
slides - Operating Experience, Session I, Cask Cranes
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Infrastructure
slides - Transportation Infrastructure
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Readiness
slides - Transportation Readiness
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Summary Report of Commercial Reactor Criticality Data for Catawba Unit 1
Summary Report of Commercial Reactor Criticality Data for Catawba Unit 1
The "Summary Report of Commercial Reactor Criticality Data for Catawba Unit 1" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Catawba Unit 1 reactor.
slides - Vendor Perspective on Spent Fuel Pool Criticality Analysis
slides - Vendor Perspective on Spent Fuel Pool Criticality Analysis
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Cumulative Impact of Industry and NRC Actions
slides - Cumulative Impact of Industry and NRC Actions
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Observations on Key Storage and Transport Technical Issues
slides - Observations on Key Storage and Transport Technical Issues
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
slides - Transportation Planning Considerations: BRC Report Recommendations and Plans for Implementation
slides - Transportation Planning Considerations: BRC Report Recommendations and Plans for Implementation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Transportation Readiness
slides - Transportation Readiness
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Advancing the Used Fuel Management Agenda
slides - Advancing the Used Fuel Management Agenda
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Flexible Integrated Modular Nuclear Fuel Canister System
Flexible Integrated Modular Nuclear Fuel Canister System
Slides, Spark Presentation
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
In January 1999, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive
Waste Management (OCRWM) submitted the Disposal Criticality Analysis Methodology
Topical Report, Revision 0 (TR) to the U.S. Nuclear Regulatory Commission (NRC) for
review and approval. The TR presents an overall approach for consideration of postclosure
disposal criticality of commercial and defense high-level waste to be placed at
the proposed Yucca Mountain site. During the course of the review and interactions
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
This standard provides criteria for accounting for reactivity effects of fuel irradiation and radioactive decay in criticality safety control of storage, transportation, and disposal of commercial LWR UO2 fuel assemblies.
This standard assumes the fuel and any fixed burnable absorbers are contained in an intact assembly. Additional considerations could be necessary for fuel assemblies that have been disassembled, consolidated, damaged, or reconfigured in any manner.
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
The Interim Staff Guidance on burnup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission’s Spent Fuel Project Office, recommends a burnup measurement for each assembly to confirm the reactor record and compliance with the assembly burnup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained.
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Burnup Credit - Technical Basis for Spent-Fuel Burnup Verification
Burnup Credit - Technical Basis for Spent-Fuel Burnup Verification
Present regulatory practices provide as much burnup credit flexibility as can be currently
expected. Further progress is achievable by incorporating the negative reactivity effects of a
subset of neutron-absorbing fission-product isotopes, and by optimizing the procedural approach
for establishing the burnup characteristics of the spent fuel to be loaded in burnup-creditdesigned
storage and transportation systems. This report describes progress toward developing a