Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Transportation and Storage Subcommittee Report to the Full Commission - Updated Report
Transportation and Storage Subcommittee Report to the Full Commission - Updated Report
To organize its investigation of whether changes are needed in the nation’s current approach to storing and eventually transporting spent nuclear fuel (SNF) and high-level waste (HLW), the Subcommittee began by asking a series of related questions:
• What role should storage play in an integrated U.S. waste management system and strategy in the future?
Spent Fuel Transportation Risk Assessment, Final Report
Spent Fuel Transportation Risk Assessment, Final Report
The U.S. Nuclear Regulatory Commission (NRC) is responsible for issuing regulations for the
packaging of spent fuel (and other large quantities of radioactive material) for transport that
provide for public health and safety during transport (Title 10 of the Code of Federal Regulations
(10 CFR) Part 71, “Packaging and Transportation of Radioactive Waste,” dated
January 26, 2004). In September 1977, the NRC published NUREG-0170, “Final Environmental
Statement on the Transportation of Radioactive Material by Air and Other Modes,” which
Industry Spent Fuel Storage Handbook
Industry Spent Fuel Storage Handbook
The Industry Spent Fuel Storage Handbook (“the Handbook”) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at-reactor dry storage of SNF.
Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program
Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program
The Electric Power Research Institute (EPRI) convened a workshop of over 40 representatives of the nuclear industry, federal government, national laboratories, and suppliers of used-fuel dry-storage systems to discuss the potential issues associated with extended dry storage of used fuel, that is, storage considerably beyond the term of current and recently proposed U.S. Nuclear Regulatory Commission (NRC) regulations. The workshop was held November 18-19, 2009, at EPRI's offices in Washington, DC.
Spent Nuclear Fuel Transportation: An Overview
Spent Nuclear Fuel Transportation: An Overview
Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility.
Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"
Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"
In May 2003, The National Academy of Sciences (NAS) formed a Committee on Transportation of Radioactive Waste (NAS Committee) to examine the transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States. The focus of this study was on the transportation of SNF in the United States.
Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery
Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery
Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima
Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three
Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be
drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery
effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics:
Operational Waste Stream Assumption for TSLCC Estimates
Operational Waste Stream Assumption for TSLCC Estimates
This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.
National Transportation Plan
National Transportation Plan
This Plan outlines the Department of Energy’s (DOE) current strategy and planning for
developing and implementing the transportation system required to transport spent nuclear fuel
(SNF) and high-level radioactive waste (HLW) from where the material is generated or stored to
the proposed repository at Yucca Mountain, Nevada. The Plan describes how DOE’s Office of
Civilian Radioactive Waste Management (OCRWM) intends to develop and implement a safe,
secure and efficient transportation system and how stakeholder collaboration will contribute to
Preliminary Transportation, Aging and Disposal Canister System Performance Specification, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification, Revision B
This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section
1.2.
Civilian Nuclear Spent Fuel Temporary Storage Options
Civilian Nuclear Spent Fuel Temporary Storage Options
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a
permanent underground repository for highly radioactive spent fuel from nuclear reactors,
but delays have pushed back the facility’s opening date to 2010 at the earliest. In the
meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000
metric tons per year. Major options for managing those growing quantities of nuclear spent
fuel include continued storage at reactors, construction of a DOE interim storage site near
Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned
Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned
Presented at WM'03 Conference, Tucson, AZ, February 23-27, 2003
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned from Prior Shipping Campaigns
Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned from Prior Shipping Campaigns
The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of
Energy (DOE) responsibility for developing and managing a Federal system for the disposal of
spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian
Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and
disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that
protects public health, safety, and the environment; enhances national and energy security; and
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Extended Dry Storage and Transportation
slides - Extended Dry Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Foreign Research Reactor West Coast Shipment Spent Nuclear Fuel Transportation - Institutional Program External Lessons Learned
Foreign Research Reactor West Coast Shipment Spent Nuclear Fuel Transportation - Institutional Program External Lessons Learned
The purpose of the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Shipments Institutional Program was to meet the goals and commitments of the Implementation Strategy Plan for the FRR SNF Shipments. This program provided a systematic approach to planning, implementing, evaluating, and validating preparedness for the first west coast shipment of SNF from Asian countries to the Idaho National Engineering and Environmental Laboratory (INEEL).
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Key Issues Associated with Interim Storage of Used Nuclear Fuel
Key Issues Associated with Interim Storage of Used Nuclear Fuel
The issue of interim storage of used (spent)1 fuel is dependent on a number of key factors, some
of which are not known at this time but are the subject of this study. The first is whether or not
the Yucca Mountain Project continues or is cancelled such that it may be able to receive spent
fuel from existing and decommissioned nuclear power stations. The second is whether the United
States will pursue a policy of reprocessing and recycling nuclear fuel. The reprocessing and
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Every year, more than 300 million packages of hazardous material are shipped in the
United States (U.S.). Most of the hazardous material shipped – about 97 percent – is
flammable, explosive, corrosive or poisonous. About 1 percent – three million packages –
of the hazardous materials shipped annually contains radioactive material, most of them
from medical and industrial applications. [DOT 1998b]
Spent nuclear fuel comprises a very small fraction of the hazardous materials packages
Co-Chair Letter to Sec. Chu
Co-Chair Letter to Sec. Chu
Dear Secretary Chu:
At the direction of the President, you charged the Blue Ribbon Commission on America’s
Nuclear Future with reviewing policies for managing the back end of the nuclear fuel
cycle and recommending a new plan. We thank you for choosing us to serve as Co-
Chairmen of the Commission and for selecting the talented and dedicated set of
Commissioners with whom we serve.
We have sought to ensure that our review is comprehensive, open and inclusive. The
Commission and its subcommittees have heard from hundreds of individuals and
Assessment of Accident Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5
Assessment of Accident Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5
This report evaluates the radiological impacts during postulated accidents associated with the
transportation of spent nuclear fuel to the proposed Yucca Mountain repository, using the
RADTRAN 5.5 computer code developed by Sandia National Laboratories. RADTRAN 5.5 can
be applied to estimate the risks associated both with incident-free transportation of radioactive
materials as well as with accidents that may be assumed to occur during transportation. Incidentfree
transportation risks for transport of spent nuclear fuel to Yucca Mountain were evaluated in