Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Presentation made at IAEA on A Unified Spent Nuclear Fuel (SNF) Database and Analysis System
Presentation made at IAEA on A Unified Spent Nuclear Fuel (SNF) Database and Analysis System
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
This paper presents an assessment of the benefits for extended burnup credit in transporting
pressurized-water-reactor (PWR) spent nuclear fuel (SNF) in the United States. A prototypic 32-
assembly cask and the current regulatory guidance were used as bases for this assessment. By
comparing recently released PWR discharge data with actinide-only-based loading curves, this
evaluation shows that additional negative reactivity (through either increased credit for fuel burnup or
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges
Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges
Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed ElBaradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
In July 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office
(SFPO) issued Interim Staff Guidance 8 Revision 1 (ISG8R1) to provide recommendations for the use
of burnup credit in storage and transport of pressurized-water reactor (PWR) spent fuel. Subsequent to
the issuance of ISG8R1, the NRC Office of Regulatory Research (RES) has directed an effort to
investigate the technical basis for extending the criteria and recommendations of ISG8R1 to allow
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing
Presentation made at IAEA on the NFST Execution Strategy Analysis Capability
Presentation made at IAEA on the NFST Execution Strategy Analysis Capability
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Presentation made at IAEA on Interim Storage Facility Design Concepts
Presentation made at IAEA on Interim Storage Facility Design Concepts
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
The United States of America ratified the “Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management” (Joint Convention) on April 9, 2003. The Joint Convention establishes an international peer review process among Contracting Parties and provides incentives for nations to take appropriate steps to bring their nuclear activities into compliance with general safety standards and practices. This first Review Meeting of the Contracting Parties under the Joint Convention is scheduled to take place in November 2003 in Vienna, Austria.