Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Characterization of Spent Fuel Approved Testing Material
Characterization of Spent Fuel Approved Testing Material
Reactivity and Isotopic Composition of Spent PWR Fuel as a Function of Initial Enrichment, Burnup, and Cooling Time
Reactivity and Isotopic Composition of Spent PWR Fuel as a Function of Initial Enrichment, Burnup, and Cooling Time
Feasibility and Incentives for the Consideration of Spent Fuel Operating Histories in the Criticality Analysis of Spent Fuel Shipping Casks
Feasibility and Incentives for the Consideration of Spent Fuel Operating Histories in the Criticality Analysis of Spent Fuel Shipping Casks
Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced.
Characterization of LWR Spent Fuel MCC-Approved Testing Material--ATM-101
Characterization of LWR Spent Fuel MCC-Approved Testing Material--ATM-101
Generic Reactivity Equivalence of PWR Fuel in Spent Fuel Storage Racks
Generic Reactivity Equivalence of PWR Fuel in Spent Fuel Storage Racks
Conservative Axial Burnup Distributions for Actinide-Only Burnup Credit
Conservative Axial Burnup Distributions for Actinide-Only Burnup Credit
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
(AFR) criticality safety analyses be validated against experimental measurements. If credit for the
negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark AFR criticality analysis methods using selected critical
configurations from commercial pressurized-water reactors (PWR).
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
Isotopic Generation and Confirmation of the BWR Appl. Model
Isotopic Generation and Confirmation of the BWR Appl. Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from boiling water reactors (BWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (Reference 7.1).
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
This report presents studies to assess reactivity margins and loading curves for pressurized water reactor
(PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-
assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to
demonstrate the impact on the predicted effective neutron multiplication factor, keff, and burnup-credit
loading curves. The purpose of this report is to provide a greater understanding of the importance of
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses
Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses
This report presents studies performed to support the development of a technically justifiable approach for
addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality
safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for
addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is
examined in detail to identify profiles that maximize the neutron multiplication factor, keff, assess its
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2
Unirradiated reactor fuel has a well-specified nuclide composition that provides a
straightforward and bounding approach to the criticality safety analysis of transport and storage
casks. As the fuel is irradiated in the reactor, the nuclide composition changes and, ignoring
the presence of burnable poisons, this composition change will cause the reactivity of the fuel to
decrease. Allowance in the criticality safety analysis for the decrease in fuel reactivity resulting
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
Review of Subcritical Source-Driven Noise Analysis Measurements
Review of Subcritical Source-Driven Noise Analysis Measurements
Subcritical source-driven noise measurements are simultaneous Rossi-a and randomly
pulsed neutron measurements that provide measured quantities that can be related to the
subcritical neutron multiplication factor. In fact, subcritical source-driven noise
measurements should be performed iii lieu of Rossi-a rneasurements because of the
additional information that is obtained from noise measurements such as the spectral ratio
and the coherencc functions. The basic understanding of source-driven noisc analysis
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit for the negative
reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical
configurations from commercial pressurized-water reactors.
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
This paper presents an assessment of the benefits for extended burnup credit in transporting
pressurized-water-reactor (PWR) spent nuclear fuel (SNF) in the United States. A prototypic 32-
assembly cask and the current regulatory guidance were used as bases for this assessment. By
comparing recently released PWR discharge data with actinide-only-based loading curves, this
evaluation shows that additional negative reactivity (through either increased credit for fuel burnup or