Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Radioactive Waste Disposal in Geological Formations International Conference Braunschweig ("City of Science 2007") November 6 – 9, 2007 Proceedings
Radioactive Waste Disposal in Geological Formations International Conference Braunschweig ("City of Science 2007") November 6 – 9, 2007 Proceedings
To solve the still open question of high-level radioactive waste disposal, the countries having made the greatest progress in this
field usually choose to carry out comparing selection procedures including broad involvement of the public. This is a central
result of the “RepoSafe”symposium which took place from November 6 to 9, 2007, in Braunschweig. Within the scope of
this symposium, internationally leading experts, invited by the Federal Office for Radiation Protection (BfS) and Gesellschaft
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Expanding interest in nuclear power and advanced fuel cycles indicate that use of mixed-oxide (MOX) fuel in the current and new U.S. reactor fleet could become an option for utilities in the coming decades. In light of this renewed interest, EPRI has reviewed the substantial knowledge base on MOX fuel irradiation in light water reactors (LWRs). The goal was to evaluate the technical feasibility of MOX fuel use in the U.S. reactor fleet for both existing and advanced LWR designs (Generation III/III+).
Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (Pu01), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report of the Federal Republic of Germany for the Third Review Meeting in May 2009
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report of the Federal Republic of Germany for the Third Review Meeting in May 2009
The Federal Government will continue to meet Germany’s existing international obligations, particularly with regard to fulfilment of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. In submitting this report, Germany is demonstrating its compliance with the Joint Convention and how it ensures the safe operation of facilities for the management of spent fuel and radioactive waste, including the decommissioning of nu-clear installations.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report under the Joint Convention by the Government of the Federal Republic of Germany for the Second Review Meeting in May 2006
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report under the Joint Convention by the Government of the Federal Republic of Germany for the Second Review Meeting in May 2006
The Federal Government will continue to meet Germany’s existing international obligations, par- ticularly with regard to fulfilment of the Joint Convention. In submitting this report, the Federal Re- public of Germany is demonstrating its compliance with the Joint Convention and ensuring the safe operation of facilities for the management of spent fuel and radioactive waste, including the de- commissioning of nuclear installations. At the same time, there is still a need for future action in order to maintain the required high standards of safety and ensure disposal.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report of the Federal Republic of Germany for the Fourth Review Meeting in May 2012
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Report of the Federal Republic of Germany for the Fourth Review Meeting in May 2012
There are currently nine power reactors in operation in Germany. These are exclusively light-water reactors (seven pressurised water reactors and two boiling water reactors whose fuel assemblies are composed of low-enriched uranium oxide or uranium/plutonium mixed oxide (MOX)).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Questions and Comments in 2009 on the National Report posed to Germany
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Questions and Comments in 2009 on the National Report posed to Germany
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Questions and Comments in 2009 on the National Report posed to Germany
Identifying remaining socio-technical challenges at the national level: Germany
Identifying remaining socio-technical challenges at the national level: Germany
This report was written within the EU-project InSOTEC (www.insotec.eu) which aims to generate a better understanding of the complex interplay between the technical and the social in radioactive waste management and, in particular, in the design and implementation of geological disposal. In a first step 13 countries have been analysed in order to identify prevailing socio-technical challenges.