Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
The OECD Nuclear Energy Agency (NEA) Forum on Stakeholder Confidence (FSC) acts as a centre for informed exchange of knowledge and experience regarding stakeholder interaction and public participation in radioactive waste management. It promotes an open discussion among members and stakeholders, across institutional boundaries, and between technical and non-technical actors, in an atmosphere of trust and mutual respect. As such, the FSC is, first and foremost, a learning organisation.
The Partnership Approach to Siting and Developing Radioactive Waste Management Facilities
The Partnership Approach to Siting and Developing Radioactive Waste Management Facilities
History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional “decide, announce and defend” model, and are learning to “engage, interact and co-operate”. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community, as shown in a recent NEA study.
From Information and Consultation to Citizen Influence and Power: 10-year Evolution in Public Involvement in Radioactive Waste Management
LEARNING AND ADAPTING TO SOCIETAL REQUIREMENTS
LEARNING AND ADAPTING TO SOCIETAL REQUIREMENTS
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
This study presents a synthesis of information and interpretations relevant to surficial processes at the Yucca Mountain Site. The report is part of the technical basis which will be used to evaluate the suitability of Yucca Mountain, Nevada, as a site for a mined geologic repository for the permanent disposal of high-level radioactive waste and spent nuclear fuel. It provides a description of the surface characteristics, preclosure hydrology, and erosion at the Yucca Mountain Site. This report will provide the technical basis to evaluate three technical guidelines from the U.S.