Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
This report presents results from a parametric study of equilibrium fuel cycle costs for a closed fuel cycle with multi-recycling of plutonium in fast reactors (FRs) compared to an open, once-through fuel cycle using PWRs. The study examines the impact on fuel cycle costs from changes in the unit costs of uranium, advanced PUREX reprocessing of discharged uranium dioxide (UO2) fuel and fast-reactor mixed-oxide (FR-MOX) fuel, and FR-MOX fuel fabrication.
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Expanding interest in nuclear power and advanced fuel cycles indicate that use of mixed-oxide (MOX) fuel in the current and new U.S. reactor fleet could become an option for utilities in the coming decades. In light of this renewed interest, EPRI has reviewed the substantial knowledge base on MOX fuel irradiation in light water reactors (LWRs). The goal was to evaluate the technical feasibility of MOX fuel use in the U.S. reactor fleet for both existing and advanced LWR designs (Generation III/III+).
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pressurized water reactor (PWR) fleet.
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has left the U.S. program for management of used fuel and high level radioactive waste (HLW)
in a state of uncertainty. In concert with this major policy reset and in response to the resulting
policy vacuum, the President directed the Energy Secretary to establish the Blue Ribbon
Commission on America’s Nuclear Future (BRC) “…to conduct a comprehensive review of
policies for managing the back end of the nuclear fuel cycle and to provide recommendations for
Letter from the BRC to the Members of the South Carolina Congressional Delegation
Letter from the BRC to the Members of the South Carolina Congressional Delegation
Dear Members of the South Carolina Congressional Delegation:
Thank you all for your letter of October 27th. We appreciate hearing your views on the
Yucca Mountain project, the safety benefits of deep geologic disposal, and the
importance of the retaining the H Canyon facility at the Department of Energy’s
Savannah River Site.
In our draft report, the Commission finds that deep geologic disposal is an essential
component of a comprehensive nuclear waste management system. Your comments
Standards & Regulations for the Geologic Disposal of Spent Nuclear Fuel and High-Level Waste
Standards & Regulations for the Geologic Disposal of Spent Nuclear Fuel and High-Level Waste
This paper draws on my experience as a reviewer of the scientific programs and performance assessments of the geological repository for transuranic waste at the Waste Isolation Pilot Plant in New Mexico and the proposed repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. In addition, I have served on numerous committees of the National Research Council that have addressed many aspects of nuclear waste management.
Plutonium Fuel: An Assessment Report by an Expert Group
Plutonium Fuel: An Assessment Report by an Expert Group
Ever since the 1950s, plutonium, used in fas reactors, has been seen as the key to unlocking the vast energy resource contained in the the world's uranium reserves. However, the reductions in expected nuclear reactor installation rates, combined with discovery of additional uranium, have led to a lengthening in the perceived time interval before fast reactors, the most effective users of plutonium, will make large demands on plutonium supplies. THere are several options concerning its use or storage in the meantime.
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
This report presents the analyses and results for the potential occurrence of external criticality events which could result from plutonium waste forms emplaced in a geologic repository similar to the one being developed at Yucca Mountain. The analyses evaluate both the MOX spent fuel and the immobilized plutonium waste forms in a repository if the waste package has degraded and if the fissile material has migrated to the invert and out into the far-field.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.