Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Probabilistic External Criticality Evaluation
Probabilistic External Criticality Evaluation
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
Dry Storage of Used Fuel Transition to Transport
Dry Storage of Used Fuel Transition to Transport
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life
Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life
Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF)
Dry Cask Storage and Transportation Burnup Credit
Dry Cask Storage and Transportation Burnup Credit
Issues for Effective Implementation of Burnup Credit
Issues for Effective Implementation of Burnup Credit
In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at
pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of
burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the
technical issues related to the basic physics phenomena and parameters of importance are similar in each of these
applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
An acceptable long-term solution for used (spent) fuel from nuclear power reactors has evaded all countries engaged in the civilian
nuclear fuel cycle. Furthermore, many countries are trying to develop interim storage solutions that address the shortage of storage in
the spent fuel cooling pools at reactors. The United States has a particularly acute problem due to its adherence to an open fuel cycle
and its large number of reactors. Two main options are available to address the spent fuel problem: dry storage on-site at reactors and
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
With the continuing accumulation of spent fuel at reactor sites, the demand for additional storage of spent fuel at AFR (away from reactor) facilities is growing. It is an issue for most Member States generating nuclear power, including those countries pursuing reprocessing. There are a diversity of technical options and services available which offer competitive, reliable solutions to meet the storage requirements. In particular, dry storage technologies have been widely applied.
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
This presentation was given by Earl Easton at the 2011 National State Liaison Officers Conference in Bethesda, MD.
The presentation highlights the current state of spent nuclear fuel as well as the progress toward its ultimate disposal.
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of the storage pool in independent spent fuel storage installations (ISFSIs).
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
Bias Determination for DOE Nuclear Fuels
Bias Determination for DOE Nuclear Fuels
The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).
Aging and Phase Stability of Waste Package Outer Barrier
Aging and Phase Stability of Waste Package Outer Barrier
This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.