Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and
ANS Response and Comments on Nuclear Waste Administration Act of 2013 Draft
ANS Response and Comments on Nuclear Waste Administration Act of 2013 Draft
The American Nuclear Society (ANS) appreciates the opportunity to comment on the draft Nuclear Waste Administration Act (NWAA). The ANS is a not-for-profit, international, scientific, and educational organization with nearly 12,000 members worldwide. The core purpose of ANS is to promote awareness and understanding of the application of nuclear science and technology. As an organization, it has published a number of position statements regarding the issue of spent fuel and radioactive waste.
ANS Position Statement: Interim Storage of Used or Spent Nuclear Fuel
ANS Position Statement: Interim Storage of Used or Spent Nuclear Fuel
The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim
storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition
can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commission’s (NRC’s)
determination that “spent fuel generated in any reactor can be stored safely and without significant
environmental impacts for at least 30 years beyond the licensed life for operation.
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.
ANS Position Statement: Creation of an Independent Entity to Manage U.S. Used Nuclear Fuel
ANS Position Statement: Creation of an Independent Entity to Manage U.S. Used Nuclear Fuel
It is increasingly apparent that the United States will require a large expansion of nuclear power
generation capacity to meet its future baseload electricity needs while reducing greenhouse gas
emissions. As a result, Congress and the Administration must act to update U.S. nuclear fuel
cycle policy to address these realities. This will likely require a multifaceted approach involving
some combination of on-site/centralized dry cask interim storage, nuclear fuel recycling, and
emplacement of high-level wastes in long-term geological storage.
ANS Position Statement: The Safety of Transporting Radioactive Materials
ANS Position Statement: The Safety of Transporting Radioactive Materials
More than 45 million shipments of radioactive materials have taken place in the United States
over the last three decades, with a current rate of about three million per year. The majority of
these radioactive shipments consist of radiopharmaceuticals, luminous dials and indicators,
smoke detectors, contaminated clothing and equipment, and research and industrial sources.
Fewer than 3,500, or 0.01%, have been involved in any sort of accident, incident, or anything
ANS Position Statement: Licensing of Yucca Mountain as a Geological Repository for Radioactive Wastes
ANS Position Statement: Licensing of Yucca Mountain as a Geological Repository for Radioactive Wastes
The American Nuclear Society (ANS) supports (1) the development and use of geological
repositories for disposal of high-level radioactive wastes and (2) expeditious processing of the
Yucca Mountain license application in an open, technically sound manner. Geological disposal
means placing the wastes hundreds of feet underground and far from the biosphere. The U.S.
Nuclear Regulatory Commission (NRC) is following a legislatively well-defined regulatory
process to evaluate the safety of the proposed Yucca Mountain Site to meet both the scientific
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
This study presents a synthesis of information and interpretations relevant to surficial processes at the Yucca Mountain Site. The report is part of the technical basis which will be used to evaluate the suitability of Yucca Mountain, Nevada, as a site for a mined geologic repository for the permanent disposal of high-level radioactive waste and spent nuclear fuel. It provides a description of the surface characteristics, preclosure hydrology, and erosion at the Yucca Mountain Site. This report will provide the technical basis to evaluate three technical guidelines from the U.S.