Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
DHLW Glass Waste Package Criticality Analysis (SCPB: N/A)
DHLW Glass Waste Package Criticality Analysis (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Isotopic Generation and Confirmation of the BWR Appl. Model
Isotopic Generation and Confirmation of the BWR Appl. Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from boiling water reactors (BWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (Reference 7.1).
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
This report presents studies to assess reactivity margins and loading curves for pressurized water reactor
(PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-
assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to
demonstrate the impact on the predicted effective neutron multiplication factor, keff, and burnup-credit
loading curves. The purpose of this report is to provide a greater understanding of the importance of
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Probabilistic Criticality Consequence Evaluation (SCPB: N/A)
Probabilistic Criticality Consequence Evaluation (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality.
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses
Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses
This report presents studies performed to support the development of a technically justifiable approach for
addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality
safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for
addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is
examined in detail to identify profiles that maximize the neutron multiplication factor, keff, assess its
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Configuration Model Generator
Configuration Model Generator
The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.
DOE SRS HLW Glass Chemical Composition
DOE SRS HLW Glass Chemical Composition
The purpose of this engineering calculation is to provide the chemical composition for the Department of Energy (DOE) Savannah River Site (SRS) High-Level Waste (HLW) glass. Since the glass is to be co-disposed with other DOE spent nuclear fuels (SNFs) in the Monitored Geologic Repository (MGR), its chemical composition is needed for the design of the co-disposal canisters and waste packages in term of criticality and degradation.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2
Unirradiated reactor fuel has a well-specified nuclide composition that provides a
straightforward and bounding approach to the criticality safety analysis of transport and storage
casks. As the fuel is irradiated in the reactor, the nuclide composition changes and, ignoring
the presence of burnable poisons, this composition change will cause the reactivity of the fuel to
decrease. Allowance in the criticality safety analysis for the decrease in fuel reactivity resulting
N-Reactor Spent Nuclear Fuel Criticality Calculations
N-Reactor Spent Nuclear Fuel Criticality Calculations
The purpose of this calculation is to characterize the criticality safety aspects of N-Reactor fuel stored in a Department of Energy spent nuclear fuel (DOE-SNF) canister that contains four Multi-Canister Overpacks (MCO's). These calculations will be done to support the analysis that will be done to demonstrate concept viability related to pre-emplacement storage and use in the Monitored Geologic Repository (MGR) environment for the pre-closure time frame.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks