Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.
Validation of important fission product evaluations through CERES integral benchmarks
Validation of important fission product evaluations through CERES integral benchmarks
Optimization of energy resources suggests increased fuel residence in reactor cores and hence improved
fission product evaluations are required. For thermal reactors the fission product cross sections in the JEF2.2 and
JEFF3.1 libraries plus new evaluations from WPEC23 are assessed through modelling the CERES experiment in
the DIMPLE reactor. The analysis uses the lattice code WIMS10. Cross sections for 12 nuclides are assessed. The
thermal cross section and low energy resonance data for 147,152Sm and 155Gd are accurate to within 4%. Similar data
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
From Integral Experiments to Nuclear Data Improvement
From Integral Experiments to Nuclear Data Improvement
Target accuracy on LWR neutronics parameters is 2 to 5 times lower than the a priori uncertainty (1σ)
due to nuclear data. This paper summarizes the experimental facilities and the integral measurements that are required
for code qualification. The rigorous use of integral information through trend analysis method is described. Trends
on JEF2 data from Keff measurements and P.I.Es are presented. These trends were accounted for in the new JEFF3
evaluations. The role of fundamental experiments, such as worth measurement of separated isotopes, is emphasized.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
UFD Storage and Transportation - Transportation Working Group Report
UFD Storage and Transportation - Transportation Working Group Report
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011).
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>