Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
CRC Depletion Calculations for Crystal River Unit 3
CRC Depletion Calculations for Crystal River Unit 3
The purpose of this calculation is to document the Crystal River Unit 3 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
(AFR) criticality safety analyses be validated against experimental measurements. If credit for the
negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark AFR criticality analysis methods using selected critical
configurations from commercial pressurized-water reactors (PWR).
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit for the negative
reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical
configurations from commercial pressurized-water reactors.
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Code to Code Comparison of One- and Two-Dimensional Methods
Code to Code Comparison of One- and Two-Dimensional Methods
This calculation file provides comparisons of one- and two-dimensional methods for calculating the isotopic content of spent nuclear fuel. The one-dimensional methods use the SAS2H sequence of SCALE 4.4a (Reference 7.1) and the SAS2 sequence of SCALE 5.0 (Reference 7.2). The two-dimensional method uses the TRITON control module along with the T-DEPL sequence of SCALE 5.0 (Reference 7.3). The SAS2H results for SCALE 4.4a are taken from Reference 7.4. Data from previous two-dimensional calculations (Reference 7.5) using CASM03 will also be used for comparisons with TRITON.
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been
modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system.
The SAS2H sequence uses transport methods combined with the depletion and decay capabilities
of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup
history. Results of these calculations are compared with chemical assay measurements of spent fuel
inventories for each sample. Results show reasonable agreement between measured and predicted
Isotopic Model for Commercial SNF Burnup Credit
Isotopic Model for Commercial SNF Burnup Credit
Disposal Criticality Analysis Methodology Topical Report describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Cooper BWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
In July 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office
(SFPO) issued Interim Staff Guidance 8 Revision 1 (ISG8R1) to provide recommendations for the use
of burnup credit in storage and transport of pressurized-water reactor (PWR) spent fuel. Subsequent to
the issuance of ISG8R1, the NRC Office of Regulatory Research (RES) has directed an effort to
investigate the technical basis for extending the criteria and recommendations of ISG8R1 to allow
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor
have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code
system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the
Waste Package Design team at the Yucca Mountain Project in the United States, who performed
the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical
measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original "fresh" composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations
Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations
The objective of the Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations is to determine the accuracy of the SAS2H control module of the baselined modular code system SCALE, Version 4.4A (STN: 10129-4.4A-00), in predicting the isotopic concentrations of spent fuel, and to quantify the overall effect that the differences between the calculated and measured isotopic concentrations have on the system reactivity. The scope of this calculation covers eight different spent fuel samples from a fuel assembly that was irradiated in the Limerick Unit 1 boiling water reactor (BWR).
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
This report is part of a report series designed to document benchmark-quality radiochemical assay data
against which computer code predictions of isotopic composition for spent nuclear fuel can be validated
to establish the uncertainty and bias associated with the code predictions. The experimental data analyzed
in the present report were acquired from two international programs: (1) ARIANE and (2) REBUS, both
coordinated by Belgonucleaire. All measurements include extensive actinide and fission product data of
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original $fresh# composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic
composition by the SCALE system depletion analysis was assessed using data presented in the report.
Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were
compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2,
and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of
predicted and measured concentrations for 14 actinides and 37 fission and activation products.