Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Dissolved Concentration Limits of Elements with Radioactive Isotopes
Dissolved Concentration Limits of Elements with Radioactive Isotopes
The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments.
Fission Product Experiment Program: Validation and Calculational Analysis
Fission Product Experiment Program: Validation and Calculational Analysis
From 1998 to 2004, a series of critical experiments referred to as the fission product (FP) experimental program was performed at the Commissariat à l'Energie Atomique Valduc research facility. The experiments were designed by Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and funded by AREVA NC and IRSN within the French program supporting development of a technical basis for burnup credit validation.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
EBS Radionuclide Transport Abstraction
EBS Radionuclide Transport Abstraction
The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Waste Package Flooding Probability Evaluation
Waste Package Flooding Probability Evaluation
The objective of this calculation is to evaluate the probability of flooding a waste package with seepage water. Disruptive events can affect the Engineered Barrier System (EBS) components and have the potential to allow an advective flow of seepage water to reach the waste package. The advective and diffusive flow paths into the waste package have the potential to result in water accumulation inside the waste package, which in turn can lead to a potentially critical configuration. This calculation will evaluate the following:
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
In-Drift Precipitates/Salts Model
In-Drift Precipitates/Salts Model
This report documents the development and validation of the in-drift precipitates/salts (IDPS) process model. The IDPS process model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the total system performance assessment (TSPA). Application of the model in support of TSPA is documented in Engineered Barrier System: Physical and Chemical Environment (BSC 2005 [DIRS 175083]).
Range of Neutronic Parameters Calculation File
Range of Neutronic Parameters Calculation File
The purpose of this engineering calculation is to document the benchmark range, over a variety of parameters, for the validation of the criticality calculations supporting the Monitored Geologic Repository (MGR). This engineering calculation accomplishes this by characterizing the Laboratory Critical Experiments (LCE) and the Pressurized Water Reactor (PWR) Commercial Reactor Criticals (CRC), and summarizing the significant parameters. This engineering calculation supports the Disposal Criticality Analysis Methodology program.
Engineered Barrier System: Physical and Chemical Environment
Engineered Barrier System: Physical and Chemical Environment
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. This report documents the development of a new process-level model, the near-field chemistry (NFC) model, and develops two abstraction models.
SAS2H Analysis of Radiochemical Assay Samples From Cooper BWR Reactor
SAS2H Analysis of Radiochemical Assay Samples From Cooper BWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available. The analytical model employed for this analysis was the SAS2H module of the SCALE sequence.