slides - Dry Storage Cask Thermal Analyses
slides - Dry Storage Cask Thermal Analyses
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The first objective of this calculation is the identification of the degraded configurations of the Enhanced Design Alternatives (EDA) II design that have some possibility of criticality and that can occur within 10,000 years of placement in the repository. The next objective is to evaluate the criticality of these configurations and to estimate the probability of occurrence for those configurations that could support criticality.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The objective of this calculation is to characterize the criticality aspect of a Department of Energy Spent Nuclear Fuel (DOE SNF) canister containing 5 Fast Flux Test Facility (FFTF) assemblies in a Five-Pack defense High-Level Waste (HLW) waste package. The purpose of this calculation is to investigate the criticality issues for the waste package (WP) containing HLW and DOE SNF canisters in various stages of degradation.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to perform an example criticality evaluation for degraded internal configurations of a boiling water reactor (BWR) waste package (WP) containing 44 spent nuclear fuel (SNF) assemblies.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The Disposal Criticality Analysis Methodology Topical Report prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This topical report describes the approach to the risk-informed, performance-based methodology to be used for performing postclosure criticality analyses for waste forms in the Monitored Geologic Repository at Yucca Mountain, Nevada. The risk-informed, performance-based methodology will be used during the licensing process to demonstrate how the potential for postclosure criticality will be limited and to demonstrate that public health and safety are protected against postclosure criticality.
The objective of this calculation is to characterize the nuclear criticality safety concerns
associated with the codisposal of the Department of Energy’s (DOE) Enrico Fermi (EF) Spent
Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and
placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to
the determination of the effective neutron multiplication factor (keff) for the degraded mode
internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8
This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.
The objective of this calculation is to evaluate the criticality potential for co-disposal waste packages affected by an igneous intrusion disruptive event in the emplacement drifts. The scope of this calculation is limited to U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) types in DOE standardized SNF canisters or Multi-Canister Overpack (MCO) Canisters.
The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package.
The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters. It is intended that the results of the criticality safety calculations provided in this document will
The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package
This analysis documents the screening analysis for postclosure criticality features, events, and
processes (FEPs). It addresses the probability of criticality events resulting from degradation
processes as well as disruptive events (i.e., seismic, igneous, and rockfall). Probability
evaluations are performed utilizing the configuration generator model described in Configuration
Generator Model for In-Package Criticality1, a component of the methodology from Disposal