Category of Content
Siting Experience Documents Only
Publication Date
Keywords
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
Legal Analysis of Commission Recommendations for Near-Term Actions
Legal Analysis of Commission Recommendations for Near-Term Actions
At the request of the staff to the Blue Ribbon Commission on America’s Nuclear Future (“BRC”), we have reviewed whether certain recommendations in the BRC’s July 29, 2011 Draft Report respecting near-term actions by the Department of Energy (“DOE”) or other officers or agencies in the Executive Branch can be implemented under existing law. These recommendations relate to:
(1) Initial steps to site, license and construct consolidated interim storage facilities for spent nuclear fuel (“spent fuel”);
Legal Background and Questions Concerning the Federal Government’s Contractual Obligations Under the “Standard Contracts” with “Utilities”
Legal Background and Questions Concerning the Federal Government’s Contractual Obligations Under the “Standard Contracts” with “Utilities”
This Memorandum analyzes issues related to the Standard Contract between the U.S. Department of Energy (“DOE”) and the “utilities.” Beginning with a discussion of specific provisions of the Standard Contract, this Memorandum then analyzes the status of lawsuits involving the Standard Contract, reviews issues related to on-site storage of spent fuel and HLW, and assesses the prospects for modifying the current waste-disposal regime through Federal legislation or amendments to the Standard Contract.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Attachment 1 - Memo, Reply to Letter to Mr. Tim Frazier
Attachment 1 - Memo, Reply to Letter to Mr. Tim Frazier
This memo sets forth the Office of Standard Contract Management's current estimate of the US Government's liability in connection with the Government's partial breach of the "standard contracts" that it executed pursuant to the NWPA of 1982. The Office of Standard Contract Management estimates that liability, as of today and based on the analysis and qualifications set forth below, to be $15.4 billion.
...
BWR Axial Profile
BWR Axial Profile
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
PWR Axial Profile Evaluation
PWR Axial Profile Evaluation
This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) initiated a research program
to support the development of technical bases and guidance that would facilitate the implementation of burnup
credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of
investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for
assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial