Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
This report presents a methodology for validation of the isotopic
contents of spent light water reactor fuel for actinide-only burnup
credit with additional high-quality radiochemistry assay (RCA) data
obtained from the Yankee Rowe pressurized water reactor. The
additional Yankee Rowe RCA data were not included in previous
isotopic validation studies for burnup credit due to the difficulty of
accurately modeling the complex Yankee Rowe fuel assembly design
using the SAS2H one-dimensional sequence of the earlier SCALE
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Independent spent fuel storage installations (ISFSIs) are currently licensed for 20 years. However, delays in developing permanent spent fuel disposal capability require continued ISFSI storage beyond the 20-year term. This report provides a technical basis for demonstrating the feasibility of extended spent fuel storage in ISFSIs.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Number of Waste Packages Hit By Igneous Events
Number of Waste Packages Hit By Igneous Events
The purpose of this report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event intersecting a repository at YuccaMountain. The analyses include disruption from an igneous intrusion and from an igneous eruption. The analyses also support the evaluation of the potential consequences from a future event as part of the total system performance assessment (TSPA) for the license application for the Yucca Mountain Project.
EBS Radionuclide Transport Abstraction
EBS Radionuclide Transport Abstraction
The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress corrosion cracking (SCC) is one of the most common corrosion-related causes for premature breach of metal structural components. SCC is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously (Jones 1992 [DIRS 169906], Section 8.1): metallurgical susceptibility, critical environment, and sustained tensile stresses.