Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project
Data Qualification Report: Mineralogy Data for Use on the Yucca Mountain Project
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Preclosure Criticality Analysis Process Report
Preclosure Criticality Analysis Process Report
The preclosure criticality analysis process described in this technical report provides a systematic approach for determining the need for criticality controls and for evaluating their effectiveness during the preclosure period of the Monitored Geologic Repository at Yucca Mountain, Nevada.
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
Criticality Model
Criticality Model
The Disposal Criticality Analysis Methodology Topical Report (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, Models, in that they are procedural, rather than mathematical.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
Initial Radionuclide Inventories
Initial Radionuclide Inventories
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Configuration Model Generator
Configuration Model Generator
The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.
Number of Waste Packages Hit By Igneous Events
Number of Waste Packages Hit By Igneous Events
The purpose of this report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event intersecting a repository at YuccaMountain. The analyses include disruption from an igneous intrusion and from an igneous eruption. The analyses also support the evaluation of the potential consequences from a future event as part of the total system performance assessment (TSPA) for the license application for the Yucca Mountain Project.
DOE SRS HLW Glass Chemical Composition
DOE SRS HLW Glass Chemical Composition
The purpose of this engineering calculation is to provide the chemical composition for the Department of Energy (DOE) Savannah River Site (SRS) High-Level Waste (HLW) glass. Since the glass is to be co-disposed with other DOE spent nuclear fuels (SNFs) in the Monitored Geologic Repository (MGR), its chemical composition is needed for the design of the co-disposal canisters and waste packages in term of criticality and degradation.