Category of Content
Siting Experience Documents Only
Publication Date
Keywords
EBS Radionuclide Transport Abstraction
EBS Radionuclide Transport Abstraction
The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
This report describes a novel approach developed at the Oak Ridge National Laboratory
(ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor
for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality
safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor.
Validation methods for burnup credit have attempted to separate the uncertainty associated with