Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
Cross-Checking of the Operator Data Used for Burn Up Measurements
Cross-Checking of the Operator Data Used for Burn Up Measurements
Taking into account of the loss of reactivity of fuels at the end of their irradiation is known under the
term burnup credit (BUC). It is a question of dimensioning in a less penalizing way the devices of transport,
storage or of processing with respect to the risk of criticality. In the context of nuclear criticality safety a better
realism cannot be obtained at the price of conservatism. As a result the regulator requires measurements make it
possible to validate the adequacy between real fuels and the design assumptions. The sophistication of the
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
This report presents results from a parametric study of equilibrium fuel cycle costs for a closed fuel cycle with multi-recycling of plutonium in fast reactors (FRs) compared to an open, once-through fuel cycle using PWRs. The study examines the impact on fuel cycle costs from changes in the unit costs of uranium, advanced PUREX reprocessing of discharged uranium dioxide (UO2) fuel and fast-reactor mixed-oxide (FR-MOX) fuel, and FR-MOX fuel fabrication.
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Expanding interest in nuclear power and advanced fuel cycles indicate that use of mixed-oxide (MOX) fuel in the current and new U.S. reactor fleet could become an option for utilities in the coming decades. In light of this renewed interest, EPRI has reviewed the substantial knowledge base on MOX fuel irradiation in light water reactors (LWRs). The goal was to evaluate the technical feasibility of MOX fuel use in the U.S. reactor fleet for both existing and advanced LWR designs (Generation III/III+).
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pressurized water reactor (PWR) fleet.
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating long-term waste package performance in the total system performance assessment (TSPA). The waste package design for the license application is a double-wall waste package placed underneath a protective drip shield (SNL 2007 [DIRS 179394]; SNL 2007 [DIRS 179354]). The WPOB will be constructed of Alloy 22 (UNS N06022) (SNL 2007 [DIRS 179567], Section 4.1.1.6), a highly corrosion-resistant nickel-based alloy.
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
EBS Radionuclide Transport Abstraction
EBS Radionuclide Transport Abstraction
The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress corrosion cracking (SCC) is one of the most common corrosion-related causes for premature breach of metal structural components. SCC is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously (Jones 1992 [DIRS 169906], Section 8.1): metallurgical susceptibility, critical environment, and sustained tensile stresses.
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
The purpose of this calculation is to perform criticality evaluations for mixed oxide spent nuclear fuel (MOX SNF) in 12 and 21 Pressurized Water Reactor (PWR) waste packages (WPs) for both intact and degraded configurations.
The MOX assembly design considered in previous studies on Pu disposition in commercial reactors is based on the Westinghouse (W) 17x17 Vantage 5 assembly (Ref. 7.2). Depletion analyses of four Pu enrichment and burnup (expressed as gigawatt days/metric ton heavy metal; GWd/MTHM) combinations were performed in Reference 7.4. These are:
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
EQ6 Calculations for Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages
EQ6 Calculations for Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages
Fuel from the Fast Flux Test Facility ' (FFTF) has been considered for disposal at the proposed