Skip to main content

Intact and Degraded Criticality Calculations for the Codisposal of Shippingport LWBR Spent Nuclear Fuel in a Waste Package

The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the U.S. Department of Energy's (DOE) Shippingport Light Water Breeder Reactor (SP LWBR) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP), which is to be placed in a Monitored Geologic Repository (MGR).

Intact and Degrade Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package

The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy’s (DOE) Three Mile Island – Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).

Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the U.S. Department of Energy’s (DOE) Advanced Test Reactor (ATR) Spent Nuclear Fuel (SNF) placed in the DOE standardized SNF canister. This analysis evaluates the codisposal of the DOE SNF canister containing the ATR SNF in a 5-Defense High-Level Waste (5-DHLW) Short Waste Package (WP) (Bechtel SAIC Company, LLC [BSC] 2004a), which is to be placed in a monitored geologic repository (MGR).

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

The purpose of this calculation is to perform degraded mode criticality evaluations of Plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for Plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilzed Plutonium) in each.

3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.

Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF

The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.

Radiolytic Specie Generation from Internal Waste Package Criticality

The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.

Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems

This report is developed from Technical Work Plan for: Thermodynamic Databases for Chemical Modeling (BSC 2006 [DIRS 177885]). The purpose of this analysis report is to update the thermochemical database data0.ymp.R4 (Output DTN: SN0410T0510404.002). Various data have been added, corrected, or corroborated, partly in response to four Condition Reports (CRs): CR 6489, CR 6731, CR 7542, and CR 7756. The most notable changes are a general revision of phosphate data to achieve consistency with the recommendations from the Committee on Data for Science and Technology (CODATA) (Cox. et al.

Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Assessment of Accident Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5

This report evaluates the radiological impacts during postulated accidents associated with the
transportation of spent nuclear fuel to the proposed Yucca Mountain repository, using the
RADTRAN 5.5 computer code developed by Sandia National Laboratories. RADTRAN 5.5 can
be applied to estimate the risks associated both with incident-free transportation of radioactive
materials as well as with accidents that may be assumed to occur during transportation. Incidentfree
transportation risks for transport of spent nuclear fuel to Yucca Mountain were evaluated in

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.