Skip to main content

Disposal Criticality Analysis Methodology Topical Report Revision 2

This topical report describes the approach to the risk-informed, performance-based methodology to be used for performing postclosure criticality analyses for waste forms in the Monitored Geologic Repository at Yucca Mountain, Nevada. The risk-informed, performance-based methodology will be used during the licensing process to demonstrate how the potential for postclosure criticality will be limited and to demonstrate that public health and safety are protected against postclosure criticality.

Letter - Approval of Request to Establish and Populate an Ad Hoc Subcommittee on the Co-Mingling of Defense and Commercial Waste

Gentlemen,
In accordance with the charter of the Blue Ribbon Commission on America's Nuclear Future and as the Secretary's designee, I approve your request to establish an ad hoc subcommittee to review and make a recommendation to the Commission regarding the co-mingling of defense and commercial waste.
This letter also serves to appoint Dr. Allison Macfarlane as the chair of the subcommittee and the membership of the subcommittee as identified in your letter to me dated October 31, 2011.

A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive Waste Repository - A Decision Aiding Methodology

This report presents a formal analysis of the five sites nominated as
suitable for characterization for the first repository; the analysis is based
on the information contained or referenced in the environmental assessments
that accompany the site nominations (DOE, 1986a-e). It is intended to aid in
the site-recommendation decision by providing insights into the comparative
advantages and disadvantages of each site. Because no formal analysis can
account for all the factors important to a decision as complex as recommending

Technical Bases for Yucca Mountain Standards, Executive Summary

The United States currently has no place to dispose of the high-level radioactive waste
resulting from the production of the nuclear weapons and the operation of nuclear
electronic power plants. The only option under formal consideration at this time is to place
the waste in an underground geologic repository at Yucca Mountain in Nevada. However,
there is strong public debate about whether such a repository could protect humans from
the radioactive waste that will be dangerous for many thousands of years. This book

Civilian Nuclear Spent Fuel Temporary Storage Options

The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a
permanent underground repository for highly radioactive spent fuel from nuclear reactors,
but delays have pushed back the facility’s opening date to 2010 at the earliest. In the
meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000
metric tons per year. Major options for managing those growing quantities of nuclear spent
fuel include continued storage at reactors, construction of a DOE interim storage site near

Nuclear Wastes: Technologies for Separations and Transmutation

Disposal of radioactive waste from nuclear weapons production and power generation has
caused public outcry and political consternation. Nuclear Wastes presents a critical review
of some waste management and disposal alternatives to the current national policy of
direct disposal of light water reactor spent fuel. The book offers clearcut conclusions for
what the nation should do today and what solutions should be explored for tomorrow.
The committee examines the currently used "once-through" fuel cycle versus different

Disposal of Spent Nuclear Fuel and High-level Radioactive Waste

The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and

Identification, Description, and Characterization of Existing and Alternative Nuclear Energy Systems

Fundamentally, a nuclear energy system uses nuclear fission to create heat, which is then available for generating electricity or other applications, including seawater desalination, heating, and production of other fuels. The nuclear energy system as currently deployed in the United States, Figure 1, consists of a number of integrated components, beginning with the natural resources required for nuclear fuel, followed by fissioning of the fuel in reactors connected to electricity generation facilities, and ending with the disposition of all wastes, including used nuclear fuel (UNF).

Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites

This report discusses the status of the commercial spent nuclear fuel (SNF) inventory in the United States, at both decommissioned and operating commercial nuclear power reactor sites; summarizes the contractual arrangement the government and utilities have under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) (Standard Contract), related litigation, and the financial liabilities resulting from the Department’s delay in performance under these contracts; provides a history of interim storage policy as it relates to commercial SN

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.