Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW). The Office of Civilian Radioactive Waste (OCRWM) was created to manage acceptance, transportation and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence.
US policy for management of used nuclear fuel (UNF) and high level radioactive wastes (HLRW) is at a crossroads, and the success of new policy directions will depend in part on broad public acceptance and support. In this paper I provide an overview of the evidence concerning the beliefs and concerns of members of the American public regarding UNF and HLNW. I also characterize the evidence on American’s policy preferences for management of these materials.
Burnup credit (BUC) is a concept applied in the criticality safety analysis of spent nuclear fuel
in which credit or partial credit is taken for the reduced reactivity worth of the fuel due to both fissile
depletion and the buildup of actinides and fission products that act as net neutron absorbers.
Typically, a two-step process is applied in BUC analysis: first, depletion calculations are performed
to estimate the isotopic content of spent fuel based on its burnup history; second, three-dimensional
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality.
Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed El Baradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
The purpose of this calculation is to perform criticality evaluations for mixed oxide spent nuclear fuel in 12 and 21 pressurized water reactor waste packages for both intact and degraded configurations. The MOX assembly design considered in previous studies on Pu disposition in commercial reactors is based on the Westinghouse 17x17 Vantage 5 assembly (Ref. 7.2). Depletion analyses of four Pu enrichment and burnup(expressed as gigawatt days/metric ton heavy metal; GWd/MTHM)) combinations were performed in Ref. 7.4.