Skip to main content

Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package.

Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form

The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.

DOE SRS HLW Glass Chemical Composition

The purpose of this engineering calculation is to provide the chemical composition for the Department of Energy (DOE) Savannah River Site (SRS) High-Level Waste (HLW) glass. Since the glass is to be co-disposed with other DOE spent nuclear fuels (SNFs) in the Monitored Geologic Repository (MGR), its chemical composition is needed for the design of the co-disposal canisters and waste packages in term of criticality and degradation.

Bias Determination for DOE Nuclear Fuels

The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).

N-Reactor Spent Nuclear Fuel Criticality Calculations

The purpose of this calculation is to characterize the criticality safety aspects of N-Reactor fuel stored in a Department of Energy spent nuclear fuel (DOE-SNF) canister that contains four Multi-Canister Overpacks (MCO's). These calculations will be done to support the analysis that will be done to demonstrate concept viability related to pre-emplacement storage and use in the Monitored Geologic Repository (MGR) environment for the pre-closure time frame.

Range of Neutronic Parameters for Repository Criticality Analyses

The Range of Neutronic Parameters for Repository Criticality Analyses technical report contains a summary of the benchmark criticality analyses (including the laboratory critical experiment [LCEs] and the commercial reactor criticals [CRCs]) used to support the validation of the criticality evaluation methods. This report also documents the development of the Critical Limits (CLs) for the repository criticality analyses.

SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Aging and Phase Stability of Waste Package Outer Barrier

This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.

Geochemistry Model Validation Report: External Accumulation Model

The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.