Assessment Report - Docket 72-1024, U.S. Department of Energy, Dry Transfer System
The U.S. Department of Energy (DOE) submitted to the Nuclear Regulatory Commission (NRC) the Dry Transfer System (DTS) Topical Safety Analysis Report (TSAR) on
The U.S. Department of Energy (DOE) submitted to the Nuclear Regulatory Commission (NRC) the Dry Transfer System (DTS) Topical Safety Analysis Report (TSAR) on
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
This report presents a formal analysis of the five sites nominated as
suitable for characterization for the first repository; the analysis is based
on the information contained or referenced in the environmental assessments
that accompany the site nominations (DOE, 1986a-e). It is intended to aid in
the site-recommendation decision by providing insights into the comparative
advantages and disadvantages of each site. Because no formal analysis can
account for all the factors important to a decision as complex as recommending
NRC initiated a research activity with the Center for Nuclear Waste Regulatory Analyses (CNWRA®) to develop a conceptual test plan for measuring the quantity of residual water remaining in a canister following vacuum drying to the criterion referenced in NUREG–1536. While residual water may be considered as unbound or bound (i.e., physi- or chemisorbed), the focus of this test plan is only the unbound water. This activity consists of the preparation of two technical letter reports. The first is the present report, which describes current industry drying practices and capabilities.
The Interim Staff Guidance on burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office, recommends the use of analyses that provide an "adequate representation of the physics" and notes particular concern with the "need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted." In the absence of readily available information on the extent of control rod (CR) usage in U.S.
Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor
have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code
system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the
Waste Package Design team at the Yucca Mountain Project in the United States, who performed
the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical
measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The
The "Summary Report of Commercial Reactor Criticality Data for Sequoyah Unit 2" contains the detailed information necessary to perform commercial reactor criticality (CRC) analyses for the Sequoyah Unit 2 reactor.
Fundamentally, a nuclear energy system uses nuclear fission to create heat, which is then available for generating electricity or other applications, including seawater desalination, heating, and production of other fuels. The nuclear energy system as currently deployed in the United States, Figure 1, consists of a number of integrated components, beginning with the natural resources required for nuclear fuel, followed by fissioning of the fuel in reactors connected to electricity generation facilities, and ending with the disposition of all wastes, including used nuclear fuel (UNF).
The comparison of different nuclear fuel cycle options has become an integral element to any analysis of the future prospects for nuclear energy, in the United States and around the world. Concerns for supply security and price volatility of fossil fuels, combined with growing resolve to reduce the emissions of greenhouse gases, have caused a general shift in attitudes towards nuclear energy. However, there are lingering sustainability concerns for nuclear energy – long term uranium supply and environmental impact – as well as concerns about the proliferation of nuclear weapons.