Skip to main content

Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnupcredit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problemlconfiguration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies.

Neutronics Benchmark for the Quad Cities-1 (Cycle 2) Mixed-Oxide Assembly Irradiation

Reactor physics computer programs are important tools that will be-used to estimate mixed oxide
fuel (MOX) physics performance in support of weapons grade plutonium disposition in U.S. and
Russian Federation reactors. Many of the computer programs used today have not undergone
calculational comparisons to measured data obtained during reactor operation. Pin power, the
buildup of transuranics, and depletion of gadolinium measurements were conducted (under Electric
Power Research Institute sponsorship) on uranium and MOX pins irradiated in the Quad Cities-l

Supplement to the Disposal Criticality Analysis Methodology

The Disposal Criticality Analysis Methodology Topical Report, YMP/TR-0004Q (DOE 1998b) described a risk-informed methodology for postclosure criticality analyses in the potential repository at Yucca Mountain, Nevada. Various models contained in the methodology were described and a process for validating these models was presented. The topical report also committed to following this process in validating the models used for License Application.

Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.

Every year, more than 300 million packages of hazardous material are shipped in the
United States (U.S.). Most of the hazardous material shipped – about 97 percent – is
flammable, explosive, corrosive or poisonous. About 1 percent – three million packages –
of the hazardous materials shipped annually contains radioactive material, most of them
from medical and industrial applications. [DOT 1998b]
Spent nuclear fuel comprises a very small fraction of the hazardous materials packages

Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice

This report has been prepared to qualitatively assess the amount of burnup credit (reactivity margin) provided by ISG-8 compared to that provided by the burnup credit methodology developed and currently applied in France. For the purposes of this study, the methods proposed in the DOE Topical Report have been applied to the ISG-8 framework since this methodology (or one similar to it) is likely to form the basis of initial cask licensing applications employing limited burnup credit in the United States.

Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses

The U.S. Nuclear Regulatory Commission's guidance on burnup credit for pressurized-water-reactor (PWR) spent nuclear fuel (SNF) recommends that analyses be based on a cooling time of five years. This recommendation eliminates assemblies with shorter cooling times from cask loading and limits the allowable credit for reactivity reduction associated with cooling time. This report examines reactivity behavior as a function of cooling time to assess the possibility of expanding the current cooling time recommendation for SNF storage and transportation.

Screening Analysis of Criticality Features, Events, and Processes for License Application

The purpose of this analysis report is to evaluate the features, events, and processes (FEPs) associated with criticality and document the screening decision for either inclusion or exclusion of criticality in the Total System Performance Assessment for License Application (TSPA-LA). The FEPs associated with criticality address scenarios that include initiators of sequences of events or processes that could lead to configurations that have potential for criticality in the repository.

An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions

Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)

THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

The work reported here is an investigation of the sensitivity of component temperatures in a specific storage system, including fuel cladding temperatures, in response to modeling assumptions that differ from design-basis, including age-related changes that could degrade the thermal behavior of the system. Preliminary evaluations of representative horizontal and vertical storage systems at design basis conditions provides general insight into the expected behavior of storage systems over extended periods of time.

Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps

The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.